《精品试卷沪科版九年级数学下册第26章概率初步定向测评试卷.docx》由会员分享,可在线阅读,更多相关《精品试卷沪科版九年级数学下册第26章概率初步定向测评试卷.docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是(
2、)ABCD2、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8下列事件中是必然事件的是( )A一班抽到的序号小于6B一班抽到的序号为9C一班抽到的序号大于0D一班抽到的序号为73、下列说法正确的是( )A“经过有交通信号的路口遇到红灯”是必然事件B已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C“心想事成,万事如意”描述的事件是随机事件D天气预报显示明天为阴天,那么明天一定不会下雨4、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个搅拌均匀后,
3、随机抽取一个小球,是红球的概率为( )ABCD5、下列判断正确的是( )A明天太阳从东方升起是随机事件;B购买一张彩票中奖是必然事件;C掷一枚骰子,向上一面的点数是6是不可能事件;D任意画一个三角形,其内角和是360是不可能事件;6、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )ABCD7、 “翻开数学书,恰好翻到第16页”,这个事件是( )A随机事件B必然事件C不可能事件D确定事件8、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可
4、能性大小为( )ABCD9、下列说法正确的是( )A“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B“打开电视机,正在播放乒乓球比赛”是必然事件C“面积相等的两个三角形全等”是不可能事件D投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次10、下列说法正确的是( )A“明天降雨的概率是80%”表示明天有80%的时间都在降雨B“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上C“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近第卷(非选择题 70分
5、)二、填空题(5小题,每小题4分,共计20分)1、从3,0,这五个数中,随机抽取一个数作为m的值,则使函数的图象经过一、三象限,且使关于x的方程有实数根的概率是_2、小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,则小明正好穿的是相同的一双袜子的概率是_3、在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _个红球4、某路口的交通信号灯红灯亮35秒,绿灯亮60秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是_5、一个密闭不透明的盒子里装有若干个质地、大小均完全相同
6、的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_三、解答题(5小题,每小题10分,共计50分)1、山西某高校为了弘扬女排精神,组建了女排社团,通过测量女同学的身高(单位:cm),并绘制了两幅不完整的统计图,请结合图中提供的信息,解答下列问题(1)填空:该排球社团一共有 名女同学,a (2)把频数分布直方图补充完整(3)随机抽取1名学生,估计这名学生身高高于160cm的概率2、随着科技的发展,沟通方式越来越丰富一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学
7、联系(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;(2)求甲、乙两位同学恰好选择同一种沟通方式的概率3、从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为将这四张扑克牌背面朝上,洗匀(1)从中随机抽取一张,则抽取的这张牌的牌面数字能被3整除的概率是_;(2)从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张利用画树状图或列表的方法,写出取出的两张牌的牌面数字所有可能的结果;求抽取的这两张牌的牌面数字之和是偶数的概率4、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球(1)搅匀后从中任意摸出1个球,恰好是红球的概率为_;恰好是黄球的概率为_
8、(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率5、口袋装有3只形状大小一样的球,其中2个球是红色,1个球是白色,规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回甲两次摸到红球获胜,乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由-参考答案-一、单选题1、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可【详解】解:一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,抽到每个
9、球的可能性相同,布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,P(白球)故选:D【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键2、C【分析】必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案【详解】解:A中一班抽到的序号小于是随机事件,故不符合要求;B中一班抽到的序号为是不可能事件,故不符合要求;C中一班抽到的序号大于是必然事件,故符合要求;D中一班抽到的序号为是随机事件,故不符合要求;故选C【点睛】本题考察了必然事件解题的关键在于区分必然、随机与不可能事件的含义3、C【详解】解:A、“经过有交
10、通信号的路口遇到红灯”是随机事件,故本选项不符合题意;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;故选:C【点睛】本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键4、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率【详解】解:共有5个球,其中红球有2个,P(摸到红球)=,故选:A【点
11、睛】此题主要考查概率的意义及求法用到的知识点为:概率=所求情况数与总情况数之比5、D【详解】解:A、明天太阳从东方升起是必然事件,故本选项错误,不符合题意;B、购买一张彩票中奖是随机事件,故本选项错误,不符合题意;C、掷一枚骰子,向上一面的点数是6是随机事件,故本选项错误,不符合题意;D、任意画一个三角形,其内角和是360是不可能事件,故本选项正确,符合题意;故选:D【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键6、B【分析】设四张小图片分别用A,a,B,b表示,画树状图,然
12、后根据树状图找出满足条件的结果即可得出概率【详解】解:设四张小图片分别用A,a,B,b表示,画树状图得:由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,摸取两张小图片恰好合成一张完整图片的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键7、A【分析】随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,根据定义逐一判断即可.【详解】解:“翻开数学书,恰好翻到第16页”,这个事件是随机事件;故选A【点睛】本题考查的是确定事件与随机事件的概念,确定事件又
13、分为必然事件与不可能事件,掌握“随机事件的概念”是解本题的关键.8、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:故选C【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.9、A【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;D、投掷一枚质地均
14、匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件10、D【分析】根据概率的意义去判断即可【详解】“明天降雨的概率是80%”表示明天有降雨的可能性是80%,A说法错误;抛一枚硬币正面朝上的概率为”表示正面向上的可能性是,B说法错误;“彩票中奖的概率是1%”表示中奖的可能性是1%,C说法错误;“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛
15、掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,D说法正确;故选D【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键二、填空题1、【分析】由正比例函数的图象及其性质可判断3,0,五个数均符合,由一元二次方程根的判别式可判断出只有,三个数符合题意,故概率为【详解】的图象经过一、三象限即3,0,这五个数均符合关于x的方程其中则令解得时关于x的方程有实数根故,三个数符合题意则P=故答案为:【点睛】本题考查了正比例函数图象及其性质和一元二次方程根的判别式当时正比例函数图象过第一、三象限,时正比例函数图象过第二、四象限;使用一元二次方程根的判别式,应先将方程整理成一般形式,再
16、确定a,b,c的值注意利用判别式可以判断方程的根的情况,反之,当方程有两个不相等的实数根时,;有两个相等的实数根时,;没有实数根时,当时,方程有两个相等的实数根,不能说方程只有一个根2、【分析】两双不同的袜子共有6种可能的组合,而穿的是同一双袜子的可能情况有2种,从而可求得概率【详解】第一双袜子的两只分别记为,第二袜子的两只分别记为,列出树状图如下:两双不同的袜子共有12种可能的组合,是同一双袜子的可能情况有4种则小明正好穿的是相同的一双袜子的概率是故答案为:【点睛】本题考查了简单事件的概率,关键是根据题意求出事件的所有可能的结果及某事件发生的可能结果,则由概率计算公式即可求得概率3、21【分
17、析】根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟练【详解】解:小明通过多次试验发现,摸出白球的频率稳定在0.3左右,白球的个数=300.3=9个,红球的个数=30-9=21个,故答案为:21【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率4、【分析】根据概率公式,即可求解【详解】解:根据题意得:当小明到达该路口时,遇到红灯的概率是 故答案为:【点睛】本题考查了概率公式:熟练掌握随机
18、事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键5、【分析】可根据“黑球数量黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数总共摸球的次数”【详解】解:共摸球4000次,其中800次摸到黑球,从中随机摸出一个球是黑球的概率为,故答案为:【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比三、解答题1、(1)100,30;(2)见解析;(3)0.55【分析】(1)根据频数分布直方图中组的人数除以扇形统计图中组的所占百分比即可求得总人数,根据总
19、人数减去组的人数即可求得组的人数,除以总人数即可求得的值;(2)根据(1)中的结论补全统计图即可;(3)根据身高高于160cm除以总人数即可求得随机抽取1名学生,估计这名学生身高高于160cm的概率【详解】解:(1)总人数为:;组的人数为故答案为:(2)如图,(3)总人数为,身高高于160cm为随机抽取1名学生,估计这名学生身高高于160cm的概率为【点睛】本题考查了频数直方图和扇形统计图信息关联,简单概率计算,从统计图中获取信息是解题的关键2、(1)3种可能,分别是“微信”“QQ”,“电话”(2)【分析】(1)用例举法可得甲,乙两位同学选择沟通方式都有3种可能.(2)画树状图展示所有9种等可
20、能的结果数,再找出恰好选中同一种沟通方式的结果数,然后根据概率公式求解(1)解:甲,乙两位同学选择沟通方式都有3种可能,分别是“微信”“QQ”,“电话”.(2)解:画出树状图,如图所示 所有情况共有9种情况,其中恰好选择同一种沟通方式的共有3种情况, 故两人恰好选中同一种沟通方式的概率为【点睛】本题考查了判断简单随机事件的可能性,利用列表法与树状图法求解等可能事件的概率;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率3、(1)(2)见解析;【分析】(1)直接由概率公式求解即可;(2)列表,共有12种等可能的结果,抽取的这两张
21、牌的牌面数字之和是偶数的结果有4种,再由概率公式求解即可(1)共有四张牌,它们的牌面数字分别为3,4,6,9,其中抽取的这张牌的牌面数字能被3整除的有3种,从中随机抽取一张,则抽取的这张牌的牌面数字能被3整除的概率是故答案为:(2) 根据题意,列表如下:第一次第二次34693(4,3)(6,3)(9,3)4(3,4)(6,4)(9,4)6(3,6)(4,6)(9,6)9(3,9)(4,9)(6,9)所有可能产生的全部结果共有种抽取的这两张牌的牌面数字之和是偶数的结果有4种抽取的这两张牌的牌面数字之和是偶数的概率 【点睛】此题考查的是画树状图或列表法求概率树状图或列表法可以不重复不遗漏的列出所有
22、可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验用到的知识点为:概率=所求情况数与总情况数之比4、(1);(2)两次都是红球的概率为【分析】(1)根据列举法将所有可能列出,然后找出符合条件的可能,计算即可得;(2)四个球简写为“红1,红2,黄,蓝”,利用列表法列出所有出现的可能,从中找到符合条件的结果数,再根据概率公式计算可(1)解:搅匀后从中任意摸出1个球,有四种可能:红球、红球、黄球、蓝球,其中是红球的可能有两种,其中是黄球的可能有一种,故答案为:;(2)四个球简写为“红1,红2,黄,蓝”,列表法为:红1红2黄蓝红1(红1,红1)(红1,红2)(红1,黄)
23、(红1,蓝)红2(红2,红1)(红2,红2)(红2,黄)(红2,蓝)黄(黄,红1)(黄,红2)(黄,黄)(黄,蓝)蓝(蓝,红1)(蓝,红2)(蓝,黄)(蓝,蓝)共有16种等可能的结果数,其中两次都是红球的有4种结果,所以两次都是红球的概率为:【点睛】题目主要考查利用列表法或树状图法求概率,理解题意,熟练掌握列表法或树状图法是解题关键5、这个游戏对双方是不公平的,理由见解析【分析】首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可【详解】解:这个游戏对双方是不公平的如图,一共有9种情况,两次摸到红球的有4种,摸到一红一白或二白的有5种,P(两个红球)=;P(一红一白)=,概率不相同,那么游戏不公平【点睛】本题考查的是游戏的公平性解决本题需要正确画出树状图进行解题用到的知识点为:概率=所求情况数与总情况数之比