微积分大一基础知识经典讲解.doc

上传人:知****量 文档编号:28214219 上传时间:2022-07-26 格式:DOC 页数:7 大小:308KB
返回 下载 相关 举报
微积分大一基础知识经典讲解.doc_第1页
第1页 / 共7页
微积分大一基础知识经典讲解.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《微积分大一基础知识经典讲解.doc》由会员分享,可在线阅读,更多相关《微积分大一基础知识经典讲解.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Chapter1 Functions(函数)1。Definition 1)Afunctionf is a rule that assigns to each element x in a set A exactly one element, called f(x), in a set B。2)The set A is called the domain(定义域) of the function.3)The range(值域)of f is the set of all possible values of f(x) as x varies through out the domain。2.Ba

2、sic Elementary Functions(基本初等函数)1) constant functionsf(x)=c2) power functions3) exponential functions domain: R range: 4) logarithmic functions domain: range: R5) trigonometric functionsf(x)=sinx f(x)=cosx f(x)=tanx f(x)=cotx f(x)=secx f(x)=cscx6) inversetrigonometric functionsdomainrangegraphf(x)=a

3、rcsinx or f(x)=arccosx orf(x)=arctanx or Rf(x)=arccotx or R3. DefinitionGiven two functions f and g, the composite function(复合函数)is defined byNote Example If find each function and its domain。4。Definition An elementary function(初等函数)is constructed using combinations(addition加, subtraction减, multipli

4、cation乘, division除) and compositionstarting with basic elementary functions。Example isanelementary function.isanelementary function.1)Polynomial(多项式) Functionswhere n is a nonnegative integer。The leading coefficient(系数) The degree of the polynomial is n.In particular(特别地),The leading coefficient con

5、stant functionThe leading coefficient linear functionThe leading coefficient quadratic(二次) functionThe leading coefficient cubic(三次) function2)Rational(有理) Functions where P and Q are polynomials.3) Root Functions4。Piecewise Defined Functions(分段函数)5。6。Properties(性质)1)Symmetry(对称性)even function: in i

6、ts domain。symmetric w。r。t。(with respect to关于) the y-axis.odd function: in its domain.symmetric about the origin.2) monotonicity(单调性)A function f is called increasingon interval(区间) I if It is called decreasing on I if 3) boundedness(有界性)4) periodicity (周期性)Example f(x)=sinxChapter 2 Limits and Conti

7、nuity1.Definition We write and say “f(x) approaches(tends to趋向于) L as x tends to a ”if we can make the values of f(x) arbitrarily(任意地) close to L by taking x to be sufficiently(足够地) close to a(on either side of a) but not equal to a。Note means that in finding the limit of f(x) as x tends to a, we ne

8、ver consider x=a。In fact, f(x) need not even be defined when x=a。 The only thing that matters is how f is defined near a。2.Limit LawsSuppose that c is a constant and the limitsexist. ThenNoteFrom 2), we have3. 1)2)Note4。OneSided Limits1)left-hand limitDefinition We write and say “f(x) tends to L as

9、x tends to a from left ”if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and x less than a.2)righthand limitDefinition We write and say “f(x) tends to L as x tends to a from right ”if we can make the values of f(x) arbitrarily close to L by taking x

10、to be sufficiently close to a and x greater than a.5.TheoremSolutionSolution6。Infinitesimals(无穷小量) and infinities(无穷大量)1)Definition We say f(x) is an infinitesimal as is some number or Example1 is an infinitesimal asExample2 is an infinitesimal as2)Theoremand g(x) is bounded.Note Example 3)Definition We say f(x) is an infinity as is some number or Example1 is an infinity asExample2 is an infinity as4)TheoremNotem, n are nonnegative integer。Exercises 7

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁