《精品解析2022年最新人教版八年级数学下册第十八章-平行四边形同步训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品解析2022年最新人教版八年级数学下册第十八章-平行四边形同步训练练习题(无超纲).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知四边形ABCD和四边形BCEF均为平行四边形,D60,连接AF,并延长交BE于点P,若APBE,A
2、B3,BC2,AF1,则BE的长为()A5B2C2D32、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )A46.5cmB22.5cmC23.25cmD以上都不对3、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或24、如图,矩形OABC的边OA长为2,边AB长为1,OA在
3、数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A2.5B2CD5、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D46、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )ABCD7、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )A(7,3)B(8,2)C(3,7)D(5,
4、3)8、如图,在菱形ABCD中,AB5,AC8,过点B作BECD于点E,则BE的长为( )ABC6D9、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A菱形B矩形C正方形D三角形10、直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A2.5B6C6.5D13第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,D、E分别是AB、AC的中点,若DE4cm,则BC_cm2、正方形ABCD的边长为4,则图中阴影部分的面积为 _3、一个三角形三边长之比为456,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为_cm4、正
5、方形的一条对角线长为4,则这个正方形面积是_5、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_三、解答题(5小题,每小题10分,共计50分)1、已知如图,在中,点是边上一点,连接,点是上一动点,连接(1)如图1,当时,连接,延长交于点,求证:;(2)如图2,以为直角边作等腰,连接,若,当点在运动过程中,求周长的最小值2、如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E,CD5,DB13,求BE的长3、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BEBF求证:DEFDFE4、如图,将长方形ABCD沿着对角线BD折叠,使点C落在
6、C处,BC交AD于点E(1)试判断BDE的形状,并说明理由;(2)若AB=6,BC=18,求BDE的面积5、如图,在RtABC中,ACB90(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作ADC,BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形-参考答案-一、单选题1、D【解析】【分析】过点D作DHBC,交BC的延长线于点H,连接BD,DE,先证DHC=90,再证四边形ADEF是平行四边形,最后利用勾股定理得出结果【详解】过点D作DHBC,交BC的延长线于点H,连接BD,DE,四边形ABCD是平行四边形,AB=3,ADC=60
7、,CD=AB=3,DCH=ABC=ADC=60,DHBC, DHC=90,ADC+CDH=90,CDH=30,在RtDCH中,CH=CD=,DH=,四边形BCEF是平行四边形,AD=BC=EF,ADEF,四边形ADEF是平行四边形,AFDE,AF=DE=1,AFBE,DEBE, ,故选D【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题2、C【解析】【分析】如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,则,即可得到DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可【详解】解:如图所示,DE,DF,E
8、F分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,DEF的周长,同理可得:GHI的周长,第三次作中位线得到的三角形周长为,第四次作中位线得到的三角形周长为第三次作中位线得到的三角形周长为这五个新三角形的周长之和为,故选C【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理3、D【解析】【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则BP=CQ,BE=CP,AB=BC=10厘
9、米,AE=4厘米,BE=CP=6厘米,BP=10-6=4厘米,运动时间t=42=2(秒);当,即点Q的运动速度与点P的运动速度不相等,BPCQ,B=C=90,要使BPE与OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用4、D【解析】【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表
10、示的实数即可【详解】解:四边形OABC是矩形,在中,由勾股定理可知:, ,弧长为,故在数轴上表示的数为,故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键5、C【解析】【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示A
11、C=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键6、C【解析】【分析】由平行线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理
12、由如下:,又,四边形是平行四边形,故选:C【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出7、A【解析】【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标【详解】解: 四边形ABCD为平行四边形。且。C点和D的纵坐标相等,都为3A点坐标为(0,0),B点坐标为(5,0), D点坐标为(2,3),C点横坐标为, 点坐标为(7,3)故选:A【点睛】本题主要是考察了平行四边形的性质、利用线段长求点坐标,其中,熟练应用平行四边形对边平行且相等的性质,是解决与平行四边形有关的坐
13、标题的关键8、B【解析】【分析】根据菱形的性质求得的长,进而根据菱形的面积等于,即可求得的长【详解】解:如图,设的交点为,四边形是菱形,在中,菱形的面积等于故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得的长是解题的关键9、B【解析】【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形【详解】解:如图,、分别是、的中点,四边形是平行四边形,平行四边形是矩形,又与不一定相等,与不一定相等,矩形不一定是正方形,故选:B【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键10
14、、C【解析】【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答【详解】解:由勾股定理得,斜边,所以,斜边上的中线长故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,解题的关键是熟记性质二、填空题1、8【解析】【分析】运用三角形的中位线的知识解答即可【详解】解:ABC中,D、E分别是AB、AC的中点DE是ABC的中位线,BC=2DE=8cm故答案是8【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键2、8【解析】【分析】正方形的对角线是它的一条对称轴,对应点到两边的都是垂直的,距离也都相等,左边梯形
15、面积和右边梯形面积相等,所以图中阴影部分的面积正好为正方形面积的一半然后列式进行计算即可得解【详解】解:由图形可得:S448,所以阴影部分的面积为8故答案是:8【点睛】本题考查正方形的性质,轴对称的性质,将阴影面积转化为三角形面积是解题的关键,学会于转化的思想思考问题3、24【解析】【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可【详解】 如图,H、I、J分别为BC,AC,AB的中点,又AB:AC:BC=4:5:6,即BC边最长故填24【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半4
16、、8【解析】【分析】正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积【详解】解:设边长为,对角线为故答案为:【点睛】本题考察了正方形的性质以及勾股定理解题的关键在于求解正方形的边长5、5【解析】【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长10,斜边中线长为105,故答案为 5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键三、解答题1、(1)证明见解析;(2)【分析】(1)通过证明CEKBEF及KEDFED即可证明;(
17、2)延长CE到点P,使EPCE,先证明点G在过点P且与CE垂直的直线PN上运动,再作点E关于点P的对称点Q,连接BQ交PN于点G,此时BEG的周长最小,求出此时GE+GB+BE的值即可【详解】证明:(1)四边形ABCD是平行四边形,KABE,BFAB, ABF90, ABE90EBFBFE,KBFE,BECE,CEKBEF(AAS),CKBF,EKEF,KEDEBC,FEDECB,BECE,EBCECB,KEDFED,EDED,KEDFED(SAS),DKDF,(2)如图,作BNBE,GNBN于点N,延长NG交射线CE于点P,则EBNFBG90,NBGEBF90GBE,NBEF90,BGBF,
18、BNGBEF(AAS),BNBE;EBNNBEP90,四边形BEPN是正方形,PEBECE,当点F在CE上运动时,点G在PN上运动;延长EP到点Q,使PQPE,连接BQ交PN于点G,PN垂直平分EQ,点Q与点E关于直线PN对称,两点之间,线段最短,此时GE+GBGQ+GBBQ最小,BE为定值,此时GE+GB+BE最小,即BEG的周长最小;作DHCE于点H,则DHEDHC90,ECBEBC45,HEDECB45,HDE45HED,DHEH,DH2+EH22DH2DE2,DHEH1;CH,BECEEH+CH1+23,EQ2PE2BE6,BEQ90,BQ,GE+GB+BE,BEG周长的最小值为【点睛
19、】本题重点考查平行四边形的性质、正方形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质、勾股定理、以及运用轴对称的性质求线段和的最小值问题的求解等知识与方法,深入探究与挖掘题中的隐含条件并且正确地作出辅助线是解题的关键,此题综合性强,难度大,属于考试压轴题2、【分析】由矩形的性质可知ABDC,AC90,由翻折的性质可知ABBF,AF90,于是可得到FC,BFDC,然后依据AAS可证明DCEBFE,依据勾股定理求得BC的长,由全等三角形的性质可知BEDE,最后再EDC中依据勾股定理可求得ED的长,从而得到BE的长【详解】解:四边形ABCD为矩形,ABCD,AC90由翻折的性质可知FA,
20、BFAB,BFDC,FC在DCE与BEF中,DCEBFE在RtBDC中,由勾股定理得:BCDCEBFE,BEDE设BEDEx,则EC12x在RtCDE中,CE2CD2DE2,即(12x)252x2解得:xBE【点睛】本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x的方程是解题的关键3、见解析【分析】根据菱形的性质可得AB=BC=CD=AD,A=C,再由BE=BF,可推出AE=CF,即可利用SAS证明ADECDF得到DE=DF,则DEF=DFE【详解】解:四边形ABCD是菱形,AB=BC=CD=AD,A=C,BE=BF,AB-BE=BC-BF,即AE=CF,ADEC
21、DF(SAS),DE=DF,DEF=DFE【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质4、(1)见解析;(2)30【分析】(1)根据折叠的性质以及矩形的性质可得结果;(2)设DE=x,则BE=x,AE=18x,在RtABE中,由勾股定理列方程求解【详解】解:(1)BDE是等腰三角形由折叠可知,CBD=EBD,ADBC,CBD=EDB,EBD=EDB,BE=DE,即BDE是等腰三角形;(2)设DE=x,则BE=x,AE=18x,在RtABE中,由勾股定理得:AB2+AE2=BE2即62+(18x)2=x2,解得:x=10,
22、所以SBDE=DEAB=106=30【点睛】本题考查了等腰三角形的判定,矩形与折叠的性质,勾股定理等知识点,熟练掌握相关的性质以及定理是解本题的关键5、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论【详解】(1)答案如下图所示:分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F(2)证明:点是AB与其垂直平分线l的交点,点是AB的中点,是RtABC上的斜边的中线,DE、DF分别是ADC,BDC的角平分线, , , , , 在四边形CEDF中, 四边形CEDF是矩形【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键