《模拟真题:2022年江西省九江市中考数学三年高频真题汇总卷(含答案及解析).docx》由会员分享,可在线阅读,更多相关《模拟真题:2022年江西省九江市中考数学三年高频真题汇总卷(含答案及解析).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年江西省九江市中考数学三年高频真题汇总卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是( )A
2、米B米C米D米2、正八边形每个内角度数为( )A120B135C150D1603、下列计算正确的是( )ABCD4、若(mx8)(23x)中不含x的一次项,则m的值为( )A0B3C12D165、已知ax224xb(mx3)2,则a、b、m的值是( )Aa64,b9,m8Ba16,b9,m4Ca16,b9,m8Da16,b9,m46、到三角形三个顶点距离相等的点是( )A三边垂直平分线的交点B三条高所在直线的交点C三条角平分线的交点D三条中线的交点7、的计算结果是( )ABCD8、今年,网络购物已经成为人们生活中越来越常用的购物方式元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派
3、送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )ABCD9、下列计算正确的是( )ABCD10、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )A增加10%B增加4%C减少4%D大小不变第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有这样一道题:“栖树一群鸦,鸦树不知数;三只栖一树,五只没去处;五只栖一树,闲了一棵树;请你动动脑,算出鸦树数”前三句的意思是:一群乌鸦在树上栖息,若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦请你动动脑,该问题中乌鸦有_只2、在
4、一个暗箱里放有x个大小相同、质地均匀的白球,为了估计白球的个数,再放入5个和白球大小、质地均相同,只有颜色不同的黄球,将球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回暗箱中,通过大量重复试验,发现摸到黄球的频率稳定在0.2,推算x的值大约是_3、若,则的值是_ 线 封 密 内 号学级年名姓 线 封 密 外 4、若机器人在数轴上某点第一步从向左跳1个单位到,第二步从向右跳2个单位到,第三步从向左跳3个单位到,第四步从向右跳4个单位到,按以上规律跳2018步,机器人落在数轴上的点,且所表示的数恰好是2019,则机器人的初始位置所表示的数是_5、点P为边长为2的正方形ABCD内一点,是等边三角
5、形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60得到线段MQ,连接AQ、PQ,则的最小值为_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动过点P作交AC或BC于点Q,分别过点P、Q作AC、AB的平行线交于点M设与重叠部分的面积为S,点P运动的时间为秒(1)当点Q在AC上时,CQ的长为_(用含t的代数式表示)(2)当点M落在BC上时,求t的值(3)当与的重合部分为三角形时,求S与t之间的函数关系式(4)点N为PM中点,直接写出点N到的两个顶点的距离相等时t的值2、计算:(1);(2)3、如图,在O
6、中,弦AC与弦BD交于点P,ACBD(1)求证APBP;(2)连接AB,若AB8,BP5,DP3,求O的半径4、如图1,在ABC中,AB AC 10,tanB ,点D为BC 边上的动点(点D不与点B ,C重合)以D为顶点作ADE B ,射线DE交AC边于点E,过点A作AFAD交射线DE于点F,连接CF(1)当D运动到BC的中点时,直接写出AF的长;(2)求证:10CEBDCD; 线 封 密 内 号学级年名姓 线 封 密 外 (3)点D在运动过程中,是否存在某个位置,使得DFCF?若存在,求出此时BD的长;若不存在,请说明理由5、如图,AD与BC相交于点M,点H在BD上求证:小明的部分证明如下:
7、证明:,同理可得:_,(1)请完成以上的证明(可用其他方法替换小明的方法);(2)求证:;(3)如图,正方形DEFG的顶点D、G分别在的边AB、AC上,E、F在边BC上,交DG于M,垂足为N,求证:-参考答案-一、单选题1、A【分析】过铅球C作CB底面AB于B,在RtABC中,AC=5米,根据锐角三角函数sin31=,即可求解【详解】解:过铅球C作CB底面AB于B,如图在RtABC中,AC=5米,则sin31=,BC=sin31AC=5sin31故选择A【点睛】本题考查锐角三角函数,掌握锐角三角函数的定义是解题关键2、B【分析】根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角
8、和为360,进而求得一个外角的度数,即可求得正八边形每个内角度数【详解】解:正多边形的每一个内角相等,则对应的外角也相等,一个外角等于:内角为 线 封 密 内 号学级年名姓 线 封 密 外 故选B【点睛】本题考查了正多边形的内角与外角的关系,利用外角求内角是解题的关键3、D【分析】先确定各项是否为同类项(所含字母相同,相同字母指数也相同的项),如为同类项根据合并同类项法则(只把系数相加减,字母和字母的指数不变)合并同类项即可【详解】A. ,故A选项错误;B. ,不是同类项,不能合并,故错误;C. ,故C选项错误;D. ,故D选项正确故选:D【点睛】本题考查合并同类项,合并同类项时先确定是否为同
9、类项,如是同类项再根据字母和字母的指数不变,系数相加合并同类项4、C【分析】先计算多项式乘以多项式得到结果为,结合不含的一次项列方程,从而可得答案.【详解】解:(mx8)(23x) (mx8)(23x)中不含x的一次项, 解得: 故选C【点睛】本题考查的是多项式乘法中不含某项,掌握“多项式乘法中不含某项即某项的系数为0”是解题的关键.5、B【分析】将根据完全平方公式展开,进而根据代数式相等即可求解【详解】解: ,ax224xb(mx3)2,即故选B【点睛】本题考查了完全平方公式,掌握完全平方公式是解题的关键6、A【分析】根据线段垂直平分线上的点到两端点的距离相等解答 线 封 密 内 号学级年名
10、姓 线 封 密 外 【详解】解:线段垂直平分线上的点到两端点的距离相等,到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点故选:A【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键7、D【分析】原式化为,根据平方差公式进行求解即可【详解】解:故选D【点睛】本题考查了平方差公式的应用解题的关键与难点在于应用平方差公式8、B【分析】设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案【详解】解:设该分派站有x名快递员,则可列方程为:7x+6=8x-1故选
11、:B【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键9、D【分析】利用完全平方公式计算即可【详解】解:A、原式a2+2ab+b2,本选项错误;B、原式=-a2+2ab-b2,本选项错误;C、原式a22abb2,本选项错误;D、原式a22abb2,本选项正确,故选:D 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键10、B【分析】设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案【详解】设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30
12、%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x(1-20%)y=1.04xy,1.04xyxy=0.04xy,0.04xyxy100%=4%即这块长方形草地的面积比原来增加了4%故选:B【点睛】本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键二、填空题1、20【分析】设乌鸦有x只,树y棵,直接利用若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦列出方程组,进而得出答案【详解】解:设乌鸦x只,树y棵依题意可列方程组:解得, 所以,乌鸦有20只故答案为:20【点睛】此题主要考查了二元一次方程组的应用,
13、正确得出方程组是解题关键2、20【分析】根据摸到黄球的频率稳定在0.2列式求解即可【详解】解:由题意得,解得x=20,经检验x=20符合题意,故答案为:20【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率3、【分析】根据绝对值、平方的非负性,可得 ,再代入即可求解【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:, ,解得: ,故答案为:【点睛】本题主要考查了绝对值、平方的非负性,乘方运算,熟练掌握绝对值、平方的非负性,乘方运算法则是解题的关键4、101
14、0【分析】由题意知每跳两次完毕向右进1个单位,按此规律跳了2018步后距出发地的距离是1009个单位,且在的右侧,根据所表示的数恰是2019,即可求得初始位置点所表示的数【详解】解:设机器人在数轴上表示a的点开始运动,A0表示a,A1表示a-1,第二步从向右跳2个单位到,A2表示a-1+2= a+1,第三步从向左跳3个单位到,A3表示a+1-3,第四步从向右跳4个单位到,A4表示a+1-3+4= a+2,由题意知每跳两次完毕向右进1个单位,而,所以电子跳蚤跳2018步后A2018表示的数为a+1009, 又因为表示2019,a+1009=2019,a=1010,所以表示1010故答案为:101
15、0【点睛】本题考查了数轴、列代数式,简单一元一次方程,图形的变化规律,得到每跳动2次相对于原数+1的规律是解题的关键5、【分析】如图,取的中点,连接,证明,进而证明在上运动, 且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值【详解】解:如图,取的中点,连接,将线段MN绕点M顺时针旋转60得到线段MQ,是等边三角形,, 线 封 密 内 号学级年名姓 线 封 密 外 是的中点,是的中点是等边三角形,即在和中,又是的中点点在上是的中点,是等边三角,又垂直平分即的最小值为四边形是正方形,且的最小值为故答案为:【点睛】本题考查了正方形的性质等边三角形的性质,旋转的性质,全等
16、三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键三、解答题1、(1);(2);(3)当,;当时,(4),【分析】(1)根据C=90,AB=5,AC=4,得cosA=,即,又因为AP=4t,AQ=5t,即可得答案;(2)由AQPM,APQM,可得,证CQMCAB,可得答案;(3)当时,根据勾股定理和三角形面积可得;当,PQM与ABC的重合部 线 封 密 内 号学级年名姓 线 封 密 外 分不为三角形;当时,由S=SPQB-SBPH计算得;(4)分3中情况考虑,当N到A、C距离相等时,过N作NEAC于E,过P作PFAC于F,在RtAPF中,cosA = ,解得
17、t = ,当N到A、B距离相等时,过N作NGAB于G,同理解得t = ,当N到B、C距离相等时,可证明AP=BP=AB=,可得答案【详解】(1)如下图:C=90,AB=5,AC=4,cosA=PQAB,cosA=动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动,点P运动的时间为t(t0)秒,AP=4t,AQ=5t,CQ=AC-AQ=4-5t,故答案为:4-5t;(2)AQPM,APQM,四边形AQMP是平行四边形当点M落在BC上时,APQM,CQMCAB,当点M落在BC上时,;(3)当时, 线 封 密 内 号学级年名姓 线 封 密 外 此时PQM与ABC的重合部分为三角形,由(1)
18、(2)知:,PQ=,PQM=QPA=90,当Q与C重合时,CQ=0,即4-5t=0,当,PQM与ABC的重合部分不为三角形,当时,如下图:,PB=5-4t,PMAC,即,S=SPQB-SBPH, 综上所述:当,;当时,(4)当N到A、C距离相等时,过N作NEAC于E,过P作PFAC于F,如图:N到A、C距离相等,NEAC,NE是AC垂直平分线,AE=AC= 2,N是PM中点, 线 封 密 内 号学级年名姓 线 封 密 外 PN=PM=AQ= AF=AE- EF=2- 在RtAPF中,cosA = 解得t = 当N到A、B距离相等时,过N作NGAB于G,如图:AG=AB=PG=AG-AP=-4t
19、cosNPG=cosA= 而PN=PM=AQ=t 解得t = 当N到B、C距离相等时,连接CP,如图:PMAC,ACBCPMBC,N到B、C距离相等,N在BC的垂直平分线上,即PM是BC的垂直平分线,PB= PC,PCB=PBC,90-PCB= 90-PBC,即PCA=PAC,PC= PA,AP=BP=AB=,t= 综上所述,t的值为或或【点睛】本题考查三角形综合应用,涉及平行四边形、三角形面积、垂直平分线等知识,解题的关键是分类画出图形,熟练应用锐角三角函数列方程2、 线 封 密 内 号学级年名姓 线 封 密 外 (1)-8(2)5【分析】(1)先计算乘法,再计算加减法;(2)先计算乘方及乘
20、法,再计算除法,最后计算加减法(1)解:原式(2)解:原式=-1+6【点睛】此题考查了有理数的混合运算及含乘方的有理数的混合运算,正确掌握运算顺序及运算法则是解题的关键3、(1)证明见解析;(2)【分析】(1)连接,先证出,再根据圆周角定理可得,然后根据等腰三角形的判定即可得证;(2)连接,并延长交于点,连接,过作于点,先根据线段垂直平分线的判定与性质可得,再根据线段的和差、勾股定理可得,然后根据直角三角形全等的判定定理证出,根据全等三角形的性质可得,最后在中,利用勾股定理可得的长,从而可得的长,在中,利用勾股定理即可得【详解】证明:(1)如图,连接,即,;(2)连接,并延长交于点,连接,过作
21、于点, 线 封 密 内 号学级年名姓 线 封 密 外 ,是的垂直平分线,在和中,设,则,在中,即,解得,在中,即的半径为【点睛】本题考查了圆周角定理、直角三角形全等的判定定理与性质、勾股定理、垂径定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键4、(1)(2)见解析(3)存在,【分析】(1)根据题意作出图形,进而,根据tanB ,求得,;(2)证明,直接得证;(3)作于M,于H,于N则,进而可得四边形AMHN为矩形,证明,求得,当时,由于点D不与点C重合,可知为等腰三角形,进而求得(1)如图,当D运动到BC的中点时, , 线 封 密 内 号学级年名姓 线 封
22、密 外 ,又 tanB ,设,则(2)证明:,; (3)点D在运动过程中,存在某个位置,使得理由:作于M,于H,于N则四边形AMHN为矩形,可设, 可得, , , 线 封 密 内 号学级年名姓 线 封 密 外 , , ,当时,由于点D不与点C重合,可知为等腰三角形, , 点D在运动过程中,存在某个位置,使得此时【点睛】本题考查了等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,正切的定义,掌握相似三角形的性质与判定是解题的关键5、(1)见解析(2)见解析(3)见解析【分析】(1)根据题意证明,进而根据相似三角形对应边成比例,列出比例式,进而根据分式的性质化简即可得证;(2)分别过点分别作垂直于,垂足分别为,根据(1)证明高的比的关系,进即可证明(3)根据正方形的性质可得,进而可得,由,根据分式的性质即可证明(1)证明:,(2)如图,分别过点分别作垂直于,垂足分别为, 线 封 密 内 号学级年名姓 线 封 密 外 ,(3)四边形是正方形,,【点睛】本题考查了相似三角形的性质与判定,分式的性质,掌握相似三角形的性质与判定是解题的关键