难点详解京改版八年级数学下册第十七章方差与频数分布同步练习试题(含详解).docx

上传人:知****量 文档编号:28205983 上传时间:2022-07-26 格式:DOCX 页数:20 大小:443.43KB
返回 下载 相关 举报
难点详解京改版八年级数学下册第十七章方差与频数分布同步练习试题(含详解).docx_第1页
第1页 / 共20页
难点详解京改版八年级数学下册第十七章方差与频数分布同步练习试题(含详解).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《难点详解京改版八年级数学下册第十七章方差与频数分布同步练习试题(含详解).docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十七章方差与频数分布同步练习试题(含详解).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十七章方差与频数分布同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲25,S乙220,S丙223,S

2、丁232,则这四名学生的数学成绩最稳定的是()A甲B乙C丙D丁2、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,这四个旅游团中年龄相近的旅游团是( )A甲团B乙团C丙团D丁团3、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是()A平均数、中位数和众数都是3B极差为4C方差是D标准差是4、为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:=13,=15:=3.6,=6.3则麦苗又高又整齐的是()A甲B乙C丙D丁5、某班将安全知识竞赛成绩整理后绘制成直方

3、图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )A90分以上的学生有14名B该班有50名同学参赛C成绩在7080分的人数最多D第五组的百分比为16%6、某厂质检部将甲,乙两人第一周每天生产合格产品的个数整理成两组数据,如表:根据数据表,说法正确的是( )甲26778乙23488A甲、乙的众数相同B甲、乙的中位数相同C甲的平均数小于乙的平均数D甲的方差小于乙的方差7、2020年某果园随机从甲、乙、丙、丁四个品种的苹果树上各采摘了10棵每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如下表所示:甲乙丙丁25252421s22.22.

4、02.12.0今年准备从这四个品种中选出一种产量既高又稳定的苹果树进行种植应选的品种是( )A甲B乙C丙D丁8、数字“20211202”中,数字“2”出现的频数是()A1B2C3D49、李大伯种植了100棵“曙光”油桃树,今年已进入收获期收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为()序号12345678910质量(千克)44515747485049534952A500千克,7500元B490千克,7350元C500

5、0千克,75000元D4850千克,72750元10、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是( )A14,0.7B14,0.4C8,0.7D8,0.4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若式子的值为非负数,则满足条件的所有整数a的方差是_2、某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:班级参加人数平均字数中位数方差甲55135149191乙55135151110有一位同学根据上面表格得

6、出如下结论:甲、乙两班学生的平均水平相同;乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大上述结论正确的是_(填序号)3、一组数据7,2,1,3的极差为_4、甲乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为2.1,乙的方差是1,那么成绩较稳定的是_(填“甲”或“乙”)5、某学校有学生名,从中随意询问名,调查收看电视的情况,结果如下表:每周收看电视的时间(小时)人数则全校每周收看电视不超过小时的人数约为_三、解答题(5小题,每小题10分,共计50分)1、在一组数据中,各数据与它们的平均数的差的绝对值的

7、平均数,即叫做这组数据的“平均差”,“平均差”也能描述一组数据的离散程度,“平均差”越大,说明数据的离散程度越大(1)分别计算下列两组数据的“平均差”,并根据计算结果比较这两组数据的稳定性; 甲:9,11,8,12,7,13,6,14,10,10乙:8,9,10,11,7,12,9,11,10,13(2)分别计算甲、乙两组数据的方差,并根据计算结果比较这两组数据的稳定性2、在精准扶贫的政策下,某贫困户在当地政府的支持和帮助下办起了养殖业,经过一段时间的精心饲养,总量为6000只的一批兔子达到了出售标准,现从这批兔中随机选择部分进行称重,将得到的数据用下列统计图表示(频数分布直方图每组含前一个边

8、界值,不含后一个边界值)根据以上信息,解答下列问题:(1)补全图中的频数分布直方图;(2)估计这批兔子中质量不小于1.7kg的有多少只3、为落实“每天锻炼一小时,快乐学习一整天”的要求,某校举行校园阳光大课间活动,为了解七年级学生每周在校体育锻炼时间,随机抽取了部分学生进行调查,并绘制了以下不完整的频数分布表和频数分布直方图时间/小时频数百分比4b1025%a15%820%1230%(1)本次调查的学生总人数为_;(2)求a、b的值,并补全频数分布直方图;(3)若将调查结果绘制成扇形统计图,求锻炼时间在“”所对应的扇形圆心角的度数4、萌萌同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分

9、九年级学生进行调查(每名学生都只选择了一门课程)将获得的数据整理绘制了两幅不完整的统计图据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了 名学生;(2)请根据以上信息补全条形统计图;(3)扇形统计图中,“语文”所对应的圆心角度数是 度;(4)若该校九年级共有1200名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对物理感兴趣5、某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项)根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,

10、一共抽查了多少名学生;(2)请将统计图补充完整;(3)如果全校有3600名学生,请问全校学生中,最喜欢“踢毽”活动的学生约有多少人-参考答案-一、单选题1、A【分析】根据方差的意义求解即可【详解】解:S甲2=5,S乙2=20,S丙2=23,S丁2=32,S甲2S乙2S丙2S丁2,这四名学生的数学成绩最稳定的是甲,故选:A【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好2、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏

11、离平均数越小,即波动越小,数据越稳定【详解】S=6,S=1.8,S=5,S=8,1.856乙的平均数, 故此项错误;D.甲的方差为,乙的方差为,甲的方差小于乙的方差,故此项正确;故选:D【点睛】此题主要考查了众数、中位数、方差和平均数,关键是掌握众数、中位数、平均数及方差的概念和方差公式7、B【分析】首先比较平均数,平均数较高的是甲和乙,进而根据方差比较选出方差较小的即可【详解】根据表格可知甲、乙的平均数较高,则表示产量高,比较甲、乙的方差,乙的方差比甲小,则乙品种的苹果树产量高又稳定,故选B【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键8、

12、D【分析】根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可【详解】解:数字“20211202”中,共有4个“2”,数字“2”出现的频数为4,故选:D【点睛】题目主要考查频数的定义,理解频数的定义是解题关键9、C【分析】先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得【详解】解:选出的10棵油桃树的平均产量为:50(千克),估计100棵油桃树的总产量为:501005000(千克),按批发价的总收入为:15500075000(元)故选C【点睛】本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法10、D【

13、分析】根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得【详解】依题意,成绩分式为整数,则大于80.5的频数为5+3=8,学生总数为则频率为故选D【点睛】本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键二、填空题1、#【分析】先求出为非负数时所有整数的值,再求出其方差即可【详解】解:由题意可得,解得故的所有整数值为,0,1,2该组数的平均数为:方差为:故填【点睛】此题将分式的意义、二次根式成立的条件和方差相结合,考查了同学们的综合运用数学知识能力2、【分析】根据中位数,平均数和方差的意义,逐一判断即可【详解】解:由于乙班学

14、生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个及以上,而甲班学生的中位数为149,说明不到一半的学生达到150个及以上,说明乙班优秀人数比甲班优秀人数多,故正确;由平均数和方差的意义可知也正确故答案是:【点睛】本题主要考查中位数,平均数和方差,掌握中位数和方差的意义,是解题的关键3、6【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可【详解】解:一组数据7,2,1,3的极差为,故答案为:【点睛】本题考查了极差的定义,熟记定义是解本题的关键4、乙【分析】根据方差的意义进行判断即可,若两组数据的平均数相同,则方差小的更稳定【详解】平均环数相等,

15、其中甲所得环数的方差为2.1,乙的方差是1,成绩较稳定的是乙故答案为:乙【点睛】本题考查了方差的意义,理解方差的意义是解题的关键5、1400【分析】由样本情况估计总体情况时,用总体人数乘以所求部分占样本的百分比即可【详解】样本频率为全校每周收看电视不超过小时的人数约为故答案为:1400【点睛】本题考查由样本数据估算总体数据,掌握基本计算方法是关键三、解答题1、(1)T甲=2,T乙=1.4,乙组数据更稳定;(2)=6,=3,乙组数据更稳定【分析】(1)先求出甲乙两组的平均数,再利用平均差公式求出甲乙两组的平均差,再比较大小即可;(2)根据方差公式求甲乙两组的方差,再比较大小即可【详解】解:(1)

16、,,乙组数据更稳定;(2),乙组数据更稳定【点睛】本题考查平均数,新定义平均差,方差,掌握平均数,新定义平均差,方差是解题关键2、(1)见解析;(2)960只【分析】(1)先根据D组的频数和占比求出抽取兔子的数量,然后求出C组兔子的数量,最后补全统计图即可;(2)先求出样本中这批兔子中质量不小于1.7kg的百分比,然后估计总体即可【详解】解:(1)抽取兔子的数量是,则质量在“C”部分的兔子数量是(只)补全频数分布直方图如下:(2)由题意得:这批兔子中质量不小于1.7kg的大约有(只)【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,补全条形统计图,解题的关键在于能够正确理

17、解题目所示的统计图3、(1)40 (2)a=6,b=,频数分布直方图见解析(3)72【分析】(1)根据体育锻炼时间“3t4”频数10,占学生总人数的百分比是25%,可得答案;(2)由(1)的结果学生总人数可求a,由学生总人数和频数4,可求b;(3)根据体育锻炼时间“5t6”占学生总人数的百分比20%,即可得答案【详解】解:(1)体育锻炼时间“3t4”频数10,百分比是25%,学生总人数为1025%=40;(2)学生总人数为40,a=40-4-10-8-12=6,b= ;频数分布直方图为下图:(3)体育锻炼时间“5t6” 占学生总人数的百分比为20%,对应的扇形圆心角的度数= 【点睛】本题考查了

18、数据的收集与整理,做题的关键是掌握由频数和对应的百分比会求总数,频数和总数会求扇形的圆心角4、(1)50;(2)见解析;(3)64.8;(4)192【分析】(1)用喜欢化学的人数除以它所占的百分比得到调查的总人数;(2)先计算出对数学感兴趣的人数,然后补全条形统计图;(3)用对语文感兴趣的人数的百分比乘以360即可;(4)用1200乘以样本中对物理感兴趣的人数的百分比即可【详解】解:(1)1020%50,所以在这次调查中一共抽取了50名学生,故答案为:50;(2)对数学感兴趣的人数为5095810315(人),补全条形统计图为:(3)扇形统计图中,“语文”所对应的圆心角度数为36064.8,故

19、答案为:64.8;(4)1200192, 所以估计该校九年级学生中有192名学生对物理感兴趣【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小5、(1)200人;(2)见解析;(3)人【分析】(1)根据喜欢“球类”的人数以及百分比,求解即可;(2)根据总人数,求得跳绳的人数,补全统计图即可;(3)求得“踢毽”活动的百分比,即可求解;【详解】解:(1)从统计图中可以得到喜欢“球类”的人数为80人,所占百分比为,则总人数为人,故答案为200人(2)喜欢“跳绳”的人数有人,补全统计图,如下:(3)最喜欢“踢毽”活动的学生约为人,故答案为人【点睛】此题考查了统计的基本知识,涉及了计算样本容量,统计图以及根据样本估算总体,解题的关键是读懂统计图,从统计图中获取有关数据

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁