《强化训练:中考数学模拟专项测评-A卷(含答案及详解).docx》由会员分享,可在线阅读,更多相关《强化训练:中考数学模拟专项测评-A卷(含答案及详解).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 中考数学模拟专项测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估
2、计这一批次产品中次品件数是( )A60B30C600D3002、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为( )A10B12C15D183、如图,ACDF,下列条件中不能判断ABCDEF的是( )AEFBCBCBEDABDE4、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )ABCD5、下列说法中错误的是( )A若,则B若,则C若,则D若,则
3、6、下列各组数据中,能作为直角三角形的三边长的是( )A,B4,9,11C6,15,17D7,24,257、下列计算正确的是( )ABCD8、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作O,O与AB,AE分别相切于点G,H,连接FG,GH则下列结论错误的是( ) 线 封 密 内 号学级年名姓 线 封 密 外 AB四边形EFGH是菱形CD9、在2,1,0,-1这四个数中,比0小的数是( )A2B0C1D-110、用配方法解一元二次方程x234x,下列配方正确的是( )A(x2)22B(x2)2
4、7C(x2)21D(x2)21第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与
5、今年的种植总面积之比为_2、若关于x的分式方程有增根,则a=_3、如图,AC12cm,AB5cm,点D是BC的中点,那么CD_cm4、2021年5月11日,国新办举行新闻发布会公布第七次全国人口普查主要数据结果,全国人口共141147万人,请将141147万用科学记数法表示为 _5、在统计学中,样本的方差可以近似地反映总体的_(在“集中趋势”,“波动大小”,“平均值”,“最大值”中选择合适的序号填写在横线上)三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4)(1)在图中画出ABC关于y轴对称的图形ABC;并
6、写出点B的坐标(2)在图中x轴上作出一点P,使PA+PB的值最小2、如图,已知点、分别在中的边、的延长线上,且(1)如果,求的长;(2)如果,过点作,垂足为点,求的长3、永辉超市计划购进甲、乙两种体育器材,若购进甲器材3件,乙器材6件,需要480元,购进甲器材2件,乙器材3件,需要280元,销售每件甲器材的利润率为37.5%,销售每件乙器材的利润率为30% 线 封 密 内 号学级年名姓 线 封 密 外 (1)甲、乙两种体育器材进价分别为多少元/件?(列方程或方程组解答)(2)该超市决定购进甲、乙体育器材100件,并且考虑市场需求和资金周转,用于购进这些体育器材的资金不少于6300元,同时又不能
7、超过6430元,则该超市有哪几种进货方案?那种方案获利最大?最大利润是多少元?4、如图,的长方形网格中,网格线的交点叫做格点点A,B,C都是格点请按要求解答下列问题:平面直角坐标系xOy中,点A,B的坐标分别是(3,1),(1,4),(1)请在图中画出平面直角坐标系xOy;点C的坐标是 ,点C关于x轴的对称点的坐标是 ;(2)设l是过点C且平行于y轴的直线,点A关于直线l的对称点的坐标是 ;在直线l上找一点P,使最小,在图中标出此时点P的位置;若Q(m,n)为网格中任一格点,直接写出点Q关于直线l的对称点的坐标(用含m,n的式子表示)5、已知过点的抛物线与坐标轴交于点A,C如图所示,连结AC,
8、BC,AB,第一象限内有一动点M在抛物线上运动,过点M作交y轴于点P,当点P在点A上方,且与相似时,点M的坐标为_-参考答案-一、单选题1、B【分析】根据样本的百分比为,用1000乘以3%即可求得答案【详解】解:随机抽取100件进行检测,检测出次品3件,估计1000件产品中次品件数是故选B【点睛】本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键2、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可【详解】解:由题意可得, 线 封 密 内 号学级年名姓 线 封 密 外 ,解得,a=15经检验,
9、a=15是原方程的解故选:C【点睛】本题利用了用大量试验得到的频率可以估计事件的概率关键是根据白球的频率得到相应的等量关系3、A【分析】利用先证明结合已有的条件 再对每个选项添加的条件逐一分析,即可得到答案.【详解】解:如图, 所以添加EFBC,不能判定ABCDEF,故A符合题意;延长 交于 添加, ABCDEF,故B,C不符合题意;添加ABDE,能判定ABCDEF,故D不符合题意;故选A【点睛】本题考查的是添加一个条件判定两个三角形全等,熟练的掌握“利用判定三角形全等”是解本题的关键.4、A【分析】根据题意作出合适的辅助线,可以先证明ADC和AOB的关系,即可建立y与x的函数关系,从而可以得
10、到哪个选项是正确的【详解】解:作ADx轴,作CDAD于点D,如图所示,由已知可得,OB=x,OA=1,AOB=90,BAC=90,AB=AC,点C的纵坐标是y,ADx轴,DAO+AOB=180,DAO=90,OAB+BAD=BAD+DAC=90, 线 封 密 内 号学级年名姓 线 封 密 外 OAB=DAC,在OAB和DAC中,OABDAC(AAS),OB=CD,CD=x,点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,y=x+1(x0)故选:A【点睛】本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断
11、出正确的函数图象5、C【分析】根据不等式的性质进行分析判断【详解】解:A、若,则,故选项正确,不合题意;B、若,则,故选项正确,不合题意;C、若,若c=0,则,故选项错误,符合题意;D、若,则,故选项正确,不合题意;故选C【点睛】本题考查了不等式的性质解题的关键是掌握不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变6、D【分析】由题意直接依据勾股定理的逆定理逐项进行判断即可.【详解】解:A,为边不能组成直角三角形,故本选项不符合题意
12、;B42+92112,以4,9,11为边不能组成直角三角形,故本选项不符合题意;C62+152172,以6,15,17为边不能组成直角三角形,故本选项不符合题意;D72+242=252,以7,24,25为边能组成直角三角形,故本选项符合题意;故选:D【点睛】本题考查勾股定理的逆定理,能熟记勾股定理的逆定理是解答此题的关键,注意掌握如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形7、D【分析】先确定各项是否为同类项(所含字母相同,相同字母指数也相同的项),如为同类项根据合并同类项 线 封 密 内 号学级年名姓 线 封 密 外 法则(只把系数相加减,字母和字母的指数
13、不变)合并同类项即可【详解】A. ,故A选项错误;B. ,不是同类项,不能合并,故错误;C. ,故C选项错误;D. ,故D选项正确故选:D【点睛】本题考查合并同类项,合并同类项时先确定是否为同类项,如是同类项再根据字母和字母的指数不变,系数相加合并同类项8、C【分析】由折叠可得DAE=FAE,D=AFE=90,EF=ED,再根据切线长定理得到AG=AH,GAF=HAF,进而求出GAF=HAF=DAE=30,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,C=90,FEC=60
14、,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,GAF=HAF,得出GHAO,不难判断D【详解】解:由折叠可得DAE=FAE,D=AFE=90,EF=ED.AB和AE都是O的切线,点G、H分别是切点,AG=AH,GAF=HAF,GAF=HAF=DAE=30,BAE=2DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:OFEF,OF是O的半径,EF是O的切线,HE=EF,NF=NG,ANE是等边三角形,FG/HE,FG=HE,AEF=60,四边形EFGH是平行四边形,FEC=60,又HE=EF,四边形EFGH是菱形,故B正确,不符合题意;AG=AH,GAF=HAF,GHA
15、O,故D正确,不符合题意;在RtEFC中,C=90,FEC=60,EFC=30,EF=2CE,DE=2CE.在RtADE中,AED=60,AD=DE, 线 封 密 内 号学级年名姓 线 封 密 外 AD=2CE,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键9、D【分析】根据正数大于零,零大于负数,即可求解【详解】解:在2,1,0,-1这四个数中,比0小的数是-1故选:D【点睛】本题主要考查了有理数的大小比较,熟练掌握正数大于零,
16、零大于负数是解题的关键10、D【分析】根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案【详解】,整理得:,配方得:,即故选:D【点睛】本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键二、填空题1、#【分析】设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.【详解】解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分
17、别为: 去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量分别为: 则今年甲品种水果的平均亩产量为: 乙品种水果的平均亩产量为: 丙品种的平均亩产量为 设今年的种植面积分别为: 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,解得: 又丙品种水果增加的产量占今年水果总产量的, 线 封 密 内 号学级年名姓 线 封 密 外 解得: 所以三种水果去年的种植总面积与今年的种植总面积之比为: 故答案为:【点睛】本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.2、【分
18、析】分式方程去分母转化为整式方程,由分式方程有增根求出a的值即可【详解】解:,去分母得: xa3-x,由分式方程有增根,得到x30,即x3,代入整式方程得:3a3-3,解得:a3故答案为:3【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值3、【分析】首先根据线段的和差求出BC的长,再利用线段的中点可得CD【详解】AC12cm,AB5cm,BCACAB7cm,点D是BC的中点,CDBCcm故答案为:【点睛】本题考查线段的和差,掌握线段中点的定义是解题关键4、1.41147109【分析】绝对值大于1的数可以用科学记数法表示,
19、一般形式为a10n, 为正整数,且比原数的整数位数少1,据此可以解答【详解】解:141147万1411470000=1.41147109故答案为:1.41147109【点睛】本题考查用科学记数法表示较大的数,熟练掌握一般形式为 ,其中, 是正整数, 线 封 密 内 号学级年名姓 线 封 密 外 解题的关键是确定 和 的值5、【分析】根据方差反映数据的波动大小解答【详解】解:在统计学中,样本的方差可以近似地反映总体的波动大小,故答案为:【点睛】此题考查了方差的性质:方差反映了数据的波动差异水平是否稳定三、解答题1、(1)作图见解析,点B的坐标为(-4,1);(2)见解析【分析】(1)分别作出三个
20、顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作出点A关于x轴的对称点A,再连接AB,与x轴的交点即为所求【详解】解:(1)如图所示,ABC即为所求点B的坐标为(-4,1);(2)如图所示,点P即为所求【点睛】本题主要考查了作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数2、(1)8;(2)【分析】(1)根据,得出E=C,EDA=B,可证DEABCA,得出,可求,根据,得出,求BC即可;(2)根据,得出DEABCA,得出,根据,得出,在中,代入数据得出,即可求出DF(1)解:,E=C,EDA=B,DEAB
21、CA, 线 封 密 内 号学级年名姓 线 封 密 外 (2)解:,DEABCA,垂足为点,在中,即,【点睛】本题考查平行线性质,三角形相似判定与性质,锐角三角函数,掌握平行线性质,三角形相似判定与性质,锐角三角函数是解题关键3、(1)甲、乙两种体育器材进价分别为80元/件,40元/件(2)见解析【分析】(1)设甲器材的进价为x元/件,乙器材的进价为y元/件,得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲器材z件,根据题意列出不等式组,求出整数解,得到三种方案,分别计算三种方案的利润,比较即可(1)解:设甲器材的进价为x元/件,乙器材的进价为y元/件,由题意可得:,解得:,甲、
22、乙两种体育器材进价分别为80元/件,40元/件;(2)设购进甲器材z件,由题意可得:,解得:,z的取值为58,59,60,方案一:当z=58时,即甲器材58件,乙器材42件,利润为:元;方案二:当z=59时,即甲器材59件,乙器材41件, 线 封 密 内 号学级年名姓 线 封 密 外 利润为:元;方案三:当z=60时,即甲器材60件,乙器材40件,利润为:元;方案三的利润最大,最大利润为2280元【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组,由两种商品利润间的关系
23、,找出获利最大的进货方案4、(1)作图见解析,(1,2),(1,-2);(2)(5,1);P点位置见解析;(2-m,n)【分析】(1)由A、B点坐标即可知x轴和y轴的位置,即可从图像中得知C点坐标,而的横坐标不变,纵坐标为C点纵坐标的相反数(2)由C点坐标(1,2)可知直线l为x=1点是点A关于直线l的对称点,由横坐标和点A横坐标之和为2,纵坐标不变,即可求得坐标为(5,1)由可得点A关于直线l的对称点,连接B交l于点P,由两点之间线段最短即可知点P为所求点设点Q(m,n)关于l的对称点为(x,y),则有(m+x)2=1,y=n,即可求得对称点(2-m,n)【详解】(1)平面直角坐标系xOy如
24、图所示由图象可知C点坐标为(1,2)点是 C点关于x轴对称得来的则的横坐标不变,纵坐标为C点纵坐标的相反数即点坐标为(1,-2)(2)如图所示,由C点坐标(1,2)可知直线l为x=1A点坐标为(-3,1),关于直线x=1对称的坐标横坐标与A点横坐标坐标和的一半为1,纵坐标不变 线 封 密 内 号学级年名姓 线 封 密 外 则为坐标为(5,1)连接所得B,B交直线x=1于点P由两点之间线段最短可知为B时最小又点是点A关于直线l的对称点为B时最小故P即为所求点设任意格点Q(m,n)关于直线x=1的对称点为(x,y)有(m+x)2=1,y=n即x=2-m,y=n则纵坐标不变,横坐标为原来横坐标相反数
25、加2即对称点坐标为(2-m,n)【点睛】本题考查了坐标轴中的对称点问题,熟悉坐标点关于轴对称的坐标变换,结合图象运用数形结合思想是解题的关键5、或【分析】运用待定系数法求出函数关系式,求出点A,C的坐标,得出AC=,BC=,AB=,判断为直角三角形,且, 过点M作MGy轴于G,则MGA=90,设点M的横坐标为x,则MG=x,求出含x的代数式的点M的坐标,再代入二次函数解析式即可【详解】把点B (4,1)代入,得: 抛物线的解析式为令x=0,得y=3,A(0,3)令y=0,则解得, C(3,0)AC=B(4,1)BC=,AB= 为直角三角形,且,过点M作MGy轴于G,则MGA=90, 线 封 密
26、 内 号学级年名姓 线 封 密 外 设点M的横坐标为x,由M在y轴右侧可得x0,则MG=x,PMMA,ACB=90,AMP=ACB=90,如图,当MAP=CBA时,则MAPCBA, 同理可得, AG=MG=x,则M(x,3+x),把M(x,3+x)代入y=x2-x+3,得x2-x+3=3+x,解得,x1=0(舍去),x2=,3+x=3+ M(,);如图,当MAP=CAB时,则MAPCAB,同理可得,AG=3MG=3x,则P(x,3+3x),把P(x,3+3x)代入y=x2-x+3,得x2-x+3=3+3x,解得,x1=0(舍去),x2=11,M(11,36),综上,点M的坐标为(11,36)或(,)【点睛】本题考查了待定系数法求解析式,相似三角形的判定与性质等等知识,解题关键是注意分类讨论思想在解题过程中的运用