《难点详解京改版九年级数学下册第二十三章-图形的变换月考练习题.docx》由会员分享,可在线阅读,更多相关《难点详解京改版九年级数学下册第二十三章-图形的变换月考练习题.docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ABC90,AB6,BC8把ABC绕点A逆时针方向旋转到ABC,点B恰好落在AC边上,则CC(
2、)A10B2C2D42、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD3、如图,在中,点D为边AB的中点,点P在边AC上,则周长的最小值等于( )ABCD4、如图,的顶点坐标为,若将绕点按顺时针方向旋转90,再向左平移2个单位长度,得到,则点的对应点的坐标是( )ABCD5、下列图形中,是中心对称图形的是( )ABCD6、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )A( - 1, - 3)B( - 1,3)C(1, - 3)D(3,1)7、下列图形中,是中心对称图形的是( )ABCD8、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为(
3、)A3B4C5D69、如图,把矩形纸片沿对角线折叠,若重叠部分为,那么下列说法错误的是( )A是等腰三角形B和全等C折叠后得到的图形是轴对称图形D折叠后和相等10、点向上平移2个单位后与点关于y轴对称,则( )A1BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,将点P(3,1)向上平移5个单位长度到点M,则点M关于原点对称的点的坐标是 _2、如图,在长方形ABCD中,AB3,BC2,E是BC中点,点F是线段AB上一个动点(1)连接DF,则DF+EF的最小值为 _;(2)以EF为斜边向斜上方作等腰RtEFG,点F从点B运动到点A的过程中,AG的最
4、小值为 _3、已知在ABC中,C90,AC12,BC5,在平面内将ABC绕B点旋转,点A落到A,点C落到C,若旋转后点C的对应点C落直线AB上,那么AA的长为_4、在平面直角坐标系中,点A(m,5)和点B(2,n)关于x轴对称,则m+n=_5、在平面直角坐标系中,点关于原点的对称点坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1)(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1
5、的坐是 2、如图,将ABC绕点A逆时针旋转得到ADE,点D在BC上,已知B70,求CDE的大小3、如图,ABC顶点的坐标分别为A(1,1),B(4,1),C(3,4)将ABC绕点A逆时针旋转90后,得到AB1C1在所给的直角坐标系中画出旋转后的AB1C1,并直接写出点B1、C1的坐标:B1( , );C1( , )4、在等边中,是边上一动点,连接,将绕点顺时针旋转120,得到,连接(1)如图1,当、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点若,请直接写出的值5、如图,在RtABC中,C90,AD
6、平分BAC交BC边于点D(1)请通过尺规作出一个点E,连接DE,使ADE与ADC关于AD对称;(保留痕迹,不写作法)(2)在(1)的条件下,若DE,EB,DB的长度是三个从小到大的连续正整数,求AD的长-参考答案-一、单选题1、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB,BC= BC,从而求出BC,即可在RtBCC中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可知,AB= AB=6,BC= BC=8,BC=10-6=4,在RtBCC中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题
7、关键2、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形3、C【分析】作点B关于AC的对称点H,连接HP、HD,
8、由轴对称的性质可知,由题意易得,则有,然后由三角形周长公式可知,要使其最小,则需满足H、P、D三点共线即可,进而问题可求解【详解】解:作点B关于AC的对称点H,连接HP、HD,如图所示:,点D为边AB的中点,(SAS),要使其最小,则需满足H、P、D三点共线,即的最小值为HD的长,的周长最小值为;故选C【点睛】本题主要考查轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键4、A【分析】画出旋转平移后的图形即可解决问题【详解】解:旋转,平移后的图形如图所示,故选:A【点睛】本题考查坐标与图形变化旋转,
9、解题的关键是理解题意,学会利用图象法解决问题5、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合6、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可【详解】解:
10、两个点关于原点对称时,它们的坐标符号相反,点关于原点对称的点的坐标是故选:A【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律7、A【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做中心对称进行解答即可【详解】A、是中心对称图像,故该选项符合题意;B、不是中心对称图像,故该选不项符合题意;C、不是中心对称图像,故该选不项符合题意;D、不是中心对称图像,故该选不项符合题意;故选:A【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是关键8、A【分析】先根据旋转的性质可得,再
11、根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键9、D【分析】根据题意结合图形可以证明EB=ED,进而证明ABECDE;此时可以判断选项A、B、D是成立的,问题即可解决【详解】解:由题意得:BCDBFD,DC=DF,C=F=90;CBD=FBD,又四边形ABCD为矩形,A=F=90,DEBF,AB=DF,EDB=FBD,DC=AB,EDB=CBD,EB=ED,EBD为等腰三角形;在ABE与CDE中,ABECDE(HL);又EBD为等腰三角形,折叠后得
12、到的图形是轴对称图形;综上所述,选项A、B、C成立,不能证明D是正确的,故说法错误的是D,故选:D【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答10、D【分析】利用平移及关于y轴对称点的性质即可求解【详解】解:把向上平移2个单位后得到点 ,点与点关于y轴对称, , , ,故选:D【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂二、填空题1、【分析】根据点的平移规律,可得平移后的点,根据关于原点对称的点的横、纵坐
13、标都互为相反数,可得答案【详解】将点向上平移5个单位长度得到点,点M关于原点对称的点的坐标是,故答案为:【点睛】本题考查了平移与坐标变换,利用关于原点对称的点的横、纵坐标都互为相反数是解题关键2、 #【分析】(1)作点E关于AB的对称点E,连接DE于AB交于F(图中F),则DE+DF最小值是DE的长,进而勾股定理求解即可(2)以EF为斜边向斜上方作等腰RtEFG,过点分别作的垂线,垂直分别为,上取,连接,则,证明即可得点在线段上当时取得最小值,进而勾股定理即可求得的长【详解】解:(1)如图1,作点E关于AB的对称点E,连接DE于AB交于F(图中F),则DE+DF最小值是DE的长,在RtCDE中
14、,CD3,CE3,DE3,故答案是:3;(2)如图,以EF为斜边向斜上方作等腰RtEFG,过点分别作的垂线,垂直分别为,上取,连接,则是等腰直角三角形是的角平分线是等腰直角三角,又点在线段上当时取得最小值是等腰直角三角形故答案是:【点睛】本题考查了勾股定理,等腰直角三角形的性质,角平分线的性质,正确的添加辅助线是解题的关键3、或【分析】分两种情况讨论:当点在线段上和当点在线段的延长线上,根据旋转的性质求出对应边长度,再根据勾股定理求解即可【详解】当点在线段上,如图1,连接,C90,AC12,BC5,在平面内将ABC绕B点旋转,点A落到A,点C落到C,BCBC5,ACAC12,ACABBC8,;
15、当C点在线段AB的延长线上,如图2,连接AA,在平面内将ABC绕B点旋转,点A落到A,点C落到C,BCBC5,ACAC12,ACAB+BC18,综合以上可得AA的长为或故答案为:或【点睛】本题考查旋转的性质以及勾股定理,掌握旋转前后对应线段相等是解题的关键4、3【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,进而可得答案【详解】解:点A(m,5)与点B(2,n)关于x轴对称,m=-2,n=5,m+n=3,故答案是:3【点睛】本题主要考查了关于x轴对称的点的坐标,关键是掌握关于x轴的点的坐标特点5、(-4,7)【分析】根据两个点关于原点对称时,它们的坐标符号相
16、反,即点P(x,y)关于原点O的对称点是P(-x,-y),进而得出答案【详解】解:点关于原点的对称点坐标为(-4,7),故答案是:(-4,7)【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键三、解答题1、(1)见解析;(2)见解析;(3)(a5,b)【分析】(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出ABC(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论【详解】解:(1)如图,ABC即为所画(2)如图,A1B1C1即为所画(3)点P(a,b)向左平移5个单位后的坐标为(a5,b
17、),关于x轴对称手点的坐标为(a5,b) 故答案为:(a5,b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置2、【分析】先由旋转的性质证明再利用等边对等角证明从而可得答案.【详解】解: 把ABC绕点A逆时针旋转得到ADE,B70, 【点睛】本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.3、画图见解析;B1(1,2);C1(4,1)【分析】图形绕点A逆时针旋转90,将AB,AC逆时针旋转90,得到,连接, 利用网格特点和旋转的性质得出点B1、C1的坐标,从而得到A
18、B1C1【详解】如图所示,AB1C1为所作,B1点的坐标为(1,2),C1点的坐标为(4,1)故答案为(1,2),(4,1)【点睛】本题考察了绕某点画旋转图形以及求点坐标,首先找到旋转的点,根据旋转角度和网格特征,即可得到对应坐标点4、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;(3)过点作于点,过点作,连接,交于点,过点作
19、,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120,得到,是等边三角形,在中,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120,得到,是等边三角形,是等边三角形设,则,,,是等边三角形,即(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆由(2)可知,将绕点顺时针旋转120,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中【点睛】本题考查了旋转的性质,等边三角形的性质与判
20、定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键5、(1)见解析;(2)【分析】(1)先以A为圆心,AC为半径画圆,交AB于点E,连接DE即可;(2)设EBa,则DEa1,DBa+1,根据勾股定理BD2DE2+EB2,解得a4,设ACx,则AEx,ABx+4,根据勾股定理AC2+BC2AB2,解得x6,在RtACD中,根据勾股定理【详解】解:(1)点E如图所作;(2)DE,EB,DB的长度是三个从小到大的连续正整数,设EBa,则DEa1,DBa+1,ACD与AED关于AD对称,ACDAED,AEDACD90,在RtDEB中,根据勾股定理BD2DE2+EB2,(a+1)2(a1)2+a2,解得a4,CD=DEa1=3,DBa+1=5BC= DE+DB=8设ACx,则AEx,ABx+4,在RtABC中,根据勾股定理AC2+BC2AB2,x2+82(x+4)2,解得x6,在RtACD中,根据勾股定理【点睛】本题考查了尺规作图,轴对称的性质以及勾股定理,掌握轴对称的性质是解题的关键