《难点解析北师大版八年级数学下册第三章图形的平移与旋转章节练习试题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版八年级数学下册第三章图形的平移与旋转章节练习试题(无超纲).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图中,既是轴对称图形又是中心对称图形的是()ABCD2、在平面直角坐标系中,点(1,3)关于原点对称的点的坐
2、标是 ( )A( - 1, - 3)B( - 1,3)C(1, - 3)D(3,1)3、已知点关于原点的对称点在一次函数的图象上,则实数的值为( )A1B-1C-2D24、如图,点D是等边ABC内一点,AD3,BD3,CD,ACE是由ABD绕点A逆时针旋转得到的,则ADC的度数是()A40B45C105D555、对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5)已知点A的坐标为(2,0),点Q是直线l上的一点,点A关于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A经n次斜平移后得到,
3、且点C的坐标为(8,6),则ABC的面积是()A12B14C16D186、下列图形中,是中心对称图形的是()ABCD7、下列图形中,既是中心对称图形也是轴对称图形的是( )A圆B平行四边形C直角三角形D等边三角形8、如图,将绕点逆时针旋转55得到,若,则的度数是( )A25B30C35D759、点P(3,2)关于原点O的对称点的坐标是()A(3,2)B(3,2)C(3,2)D(2,3)10、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A1B2C3D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图RtABC中,C90,BC3,AC4,将ABC绕点B逆时
4、针旋转得ABC,若点C在AB上,则AA的长为 _2、如图,在平面直角坐标系中,已知点,将绕坐标原点逆时针旋转至,则点的坐标是_3、如图,ABC与A1B1C1关于轴对称,将ABC绕点O顺时针旋转90得到A2B2C2,则CC1C2_度4、已知点A的坐标为,O为坐标原点,连结OA,将线段OA绕点顺时针旋转90得到线段,则点的坐标为_5、如图,在中,将绕点C按逆时针方向旋转得到,点A的对应点为,点恰好在边上,则点与点B之间的距离为_三、解答题(5小题,每小题10分,共计50分)1、如图,在等边三角形ABC中,点P为ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60得到 ,连接 (1)
5、用等式表示 与CP的数量关系,并证明;(2)当BPC120时, 直接写出 的度数为 ;若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明2、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由3、如图,在直角坐标系中按要求作图,所画图形的顶点必须与每个小正方形的顶点重合(1)画出一个
6、面积等于9的等腰直角三角形ABC,使ABC的三个顶点在坐标轴上,且ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)(2)将ABC向下平移3个单位,再向右平移1个单位得到A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出A1B1C1,并直接写出A1C的长4、已知点P(3a15,2a)(1)若点P到x轴的距离是1,试求出a的值;(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标5、如图,在平面直角坐标系中,直角的三个顶点分别是,(1)将以点为旋转中心顺时针旋转,画出旋
7、转后对应的并写出各个顶点坐标;(2)分别连结,后,求四边形的面积-参考答案-一、单选题1、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,也不是中心对称图形故本选项不合题意;B、是轴对称图形,不是中心对称图形故本选项不合题意;C、不是轴对称图形,是中心对称图形故本选项不合题意;D、既是轴对称图形又是中心对称图形故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合2、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求
8、解即可【详解】解:两个点关于原点对称时,它们的坐标符号相反,点关于原点对称的点的坐标是故选:A【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律3、B【分析】求出点关于原点的对称点的坐标,代入函数解析式中求解即可【详解】解:点关于原点的对称点的坐标为(-2,3),代入得,解得,故选:B【点睛】本题考查了关于原点对称的点的坐标特征和待定系数法,解题关键是求出对称点的坐标,熟练运用待定系数法求值4、C【分析】连接DE,由旋转的性质可证明是等边三角形,得,再由勾股定理的逆定理可证明是等腰直角三角形得出,从而可得出结论【详解】解:连接DE,如图:是等边三角形,AB=AC
9、, 由旋转可得, ,即 是等边三角形,DE=AD=3, DE3,CE3,CD, 是等腰直角三角形, 故选:C【点睛】此题是旋转的性质,主要考查了等边三角形的性质和判定,勾股定理逆定理,解本题的关键是判断出ADE是等边三角形5、A【分析】连接CQ,根据中心和轴对称的性质和直角三角形的判定得到ACB90,延长BC交x轴于点E,过C点作CFAE于点F,根据待定系数法得出直线的解析式进而解答即可【详解】解:连接CQ,如图:由中心对称可知,AQBQ,由轴对称可知:BQCQ,AQCQBQ,QACACQ,QBCQCB,QAC+ACQ+QBC+QCB180,ACQ+QCB90,ACB90,ABC是直角三角形,
10、延长BC交x轴于点E,过C点作CFAE于点F,如图,A(2,0),C(8,6),AFCF6,ACF是等腰直角三角形,AEC45,E点坐标为(14,0),设直线BE的解析式为ykx+b,C,E点在直线上,可得:,解得:,yx+14,点B由点A经n次斜平移得到,点B(n+2,2n),由2nn2+14,解得:n4,B(6,8),ABC的面积SABESACE12812612,故选:A【点睛】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,得到的坐标是解本题的关键6、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断
11、即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.7、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A圆既是中心对称图形也是轴对称图形,故此选项符合题意;B平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;C直角三角形既不是中心对称图形,也不一定是轴对称图形,不符合题意;D等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意故选
12、:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合8、C【分析】由旋转的性质可得出答案【详解】解:将OAB绕点O逆时针旋转55后得到OCD,AOC=55,AOB=20,BOC=AOC-AOB=55-20=35,故选:C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等9、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,
13、横纵坐标都变成相反数”解答【详解】解:点P(3,2)关于原点O的对称点P的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键10、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】第一个图形是中心对称图形,又是轴对称图形,第二个图形是中心对称图形,又是轴对称图形,第三个图形不是中心对称图形,是轴对称图形,第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形故选:B【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分
14、沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、【分析】根据旋转的性质可得,勾股定理求得,进而求得,在勾股定理即可求得【详解】解:RtABC中,C90,BC3,AC4,将ABC绕点B逆时针旋转得ABC,在中, 故答案为:【点睛】本题考查了勾股定理,旋转的性质,掌握旋转的性质是解题的关键2、【分析】分别过点 作轴, 轴于点 ,可证得 ,从而得到 ,即可求解【详解】解:如图,分别过点 作轴, 轴于点 , , ,根据题意得: , , , , ,点, , ,点的坐标是 故答案为:【点睛】本题主要考查了图形的旋转,全等三角形的判定和性质,准确得到是解题的关键3、
15、45【分析】根据轴对称和旋转分别求得的坐标,进而根据勾股定理的逆定理证明是等腰直角三角形,即可求得CC1C2【详解】解:关于轴对称的点,将ABC绕点O顺时针旋转90得到A2B2C2,是等腰直角三角形,CC1C2故答案为:【点睛】本题考查了轴对称的性质与旋转的性质,勾股定理及勾股定理的逆定理,求得的坐标是解题的关键4、(b,a)【分析】设A在第一象限,画出图分析,将线段OA绕点O按顺时针方向旋转90得OA1,如图所示根据旋转的性质,A1B1AB,OB1OB综合A1所在象限确定其坐标,其它象限解法完全相同【详解】解:设A在第一象限,将线段OA绕点O按顺时针方向旋转90得OA1,如图所示A(a,b)
16、,OBa,ABb,A1B1ABb,OB1OBa,因为A1在第四象限,所以A1(b,a),A在其它象限结论也成立故答案为:(b,a),【点睛】本题考查了图形的旋转,设点A在某一象限是解题的关键5、【分析】由旋转的性质,可证、都是等边三角形,由勾股定理求出的长即可【详解】解:如图,连接,将绕点按逆时针方向旋转得到,是等边三角形,是等边三角形,在中,故答案为:【点睛】本题主要考查了旋转的性质,等边三角形的判定与性质,勾股定理等知识,解题的关键是熟练掌握旋转的性质三、解答题1、(1),理由见解析;(2)60;PM,见解析【分析】(1)根据等边三角形的性质,可得ABAC,BAC60,再由由旋转可知:从而
17、得到,可证得,即可求解 ;(2)由BPC120,可得PBCPCB60根据等边三角形的性质,可得BAC60,从而得到ABCACB120,进而得到ABPACP60再由,可得 ,即可求解;延长PM到N,使得NMPM,连接BN可先证得PCMNBM从而得到CPBN,PCMNBM进而得到 根据可得,可证得,从而得到 再由 为等边三角形,可得 从而得到 ,即可求解【详解】解:(1) 理由如下:在等边三角形ABC中,ABAC,BAC60,由旋转可知: 即在和ACP中 (2)BPC120,PBCPCB60在等边三角形ABC中,BAC60,ABCACB120,ABPACP60 ,ABPABP60即 ;PM 理由如
18、下:如图,延长PM到N,使得NMPM,连接BNM为BC的中点,BMCM在PCM和NBM中 PCMNBM(SAS)CPBN,PCMNBM BPC120,PBCPCB60PBCNBM60即NBP60ABCACB120,ABPACP60ABPABP60即 在PNB和 中 (SAS) 为等边三角形, ,PM 【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键2、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于
19、y轴成轴对称,对称轴为y轴【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)根据轴对称的定义判断即可【详解】解:(1)如图,A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,A2B2C2即为所求,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3
20、)关于原点对称的点,横坐标与纵坐标都互为相反数3、(1)见解析;(2)画图见解析,A1C的长为4【详解】解:(1)如图,ABC即为所求AO=BO=CO=3,且AOBC,BAO=CAO=45,ABC的面积=BCAO=9,BAC=90,且ABC关于y轴对称;(2)如图,A1B1C1即为所求如图,A1C的长为4【点睛】本题考查了根据平移变换作图以及等腰直角三角形的判定和性质,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接4、(1)或;(2)或;(3)或【分析】(1)根据“点到轴的距离是1”可得,由此即可求出的值;(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;(3
21、)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案【详解】解:(1)点到轴的距离是1,且,即或,解得或;(2)当时,点的坐标为,则点的坐标为,即,当时,点的坐标为,则点的坐标为,即,综上,点的坐标为或;(3)点位于第三象限,解得,点的横、纵坐标都是整数,或,当时,则点的坐标为,当时,则点的坐标为,综上,点的坐标为或【点睛】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键5、(1)图见解析,;(2)9【分析】利用网格特点和旋转的性质画出、的对应点、,从而得到;利用两个梯形的面积和减去一个三角形的面积计算四边形的面积【详解】解:如图,为所作,各个顶点坐标为,;如图,四边形的面积【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键