《难点详解沪科版九年级数学下册第25章投影与视图专题练习试题.docx》由会员分享,可在线阅读,更多相关《难点详解沪科版九年级数学下册第25章投影与视图专题练习试题.docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第25章投影与视图专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列几何体中,其三视图完全相同的是( )ABCD2、如图,该几何体的左视图是( )ABCD3、某几何体从三个方
2、向看到的平面图形都相同,这个几何体可以是( )ABCD4、下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()ABCD5、如图所示的几何体的主视图是()ABCD6、如图是下列哪个立体图形的主视图()ABCD7、如图所示的几何体的左视图为()ABCD8、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为( )A6B7C8D99、如图所示的几何体左视图是( )ABCD10、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,王华晚上由路灯A
3、下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB_米2、由若干个小正方体组成的几何体的三视图如图所示,则组成这个几何体的小正方体的个数为_3、一个直九棱柱底面的每条边长都等于3cm,侧边长都等于6cm,则它的侧面面积等于 _cm24、如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是_5、一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为_三、解答题(5小题,每小题10分,共计50分)1、一个几何体的三种视图如图所示(1)这个几何体的名称是_;(
4、2)求这个几何体的表面积;(3)求这个几何体的体积2、如图是由块积木搭成的几何体,这几块积木都是相同的正方体请画出从正面、左面、上面看到的这个几何体的形状图3、用棱长都为5cm的小立方块搭成几何体,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数(1)请你分别画出从正面和从左面看到的这个几何体的形状图;(2)若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加大小相同的小立方块,以搭成一个大正方体,至少还需要_个小立方块;(3)图中的几何体的表面积(包括与桌面接触的部分)为_;若新搭一个几何体,且满足如下三个条件:图中从上面看到的几何体的形状图
5、不变,小立方块的总数不变,从上面看到的小正方形中的数字可以改变,则新搭几何体的表面积(包括与桌面接触的部分)最小值和最大值分别为_,_4、如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竿AB的长为3m某一时刻,测得竹竿AB在阳光下的投影BC的长为2m(1)请你在图中画出此时旗杆DE在阳光下的投影;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6m,请你计算旗杆DE的高度5、如图所示的几何体是由几个相同的小正方体排成3行组成的(1)填空:这个几何体由 个小正方体组成;(2)画出该几何体的三个视图(用阴影图形表示)-参考答案-一、单选题1、A【分析
6、】找到从物体正面、左面和上面看得到的图形全等的几何体即可【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、四棱锥的俯视图与主视图和左视图不同,错误;D、圆锥的俯视图与主视图和左视图不同,错误;故选A【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体2、C【分析】根据从左边看得到的图形是左视图解答即可【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确故选C【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键3、C【分析】根据三视图判断即可;【详解】的左视图、主视图是三角形
7、,俯视图是圆,故A不符合题意;的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;的主视图、左视图、俯视图都是正方形,故C符合题意;的左视图、主视图是长方形,俯视图是圆,故D不符合题意;故选C【点睛】本题主要考查了几何体三视图的判断,准确分析是解题的关键4、C【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案【详解】解:、主视图、俯视图都是正方形,故不符合题意;、主视图、俯视图都是矩形,故不符合题意;、主视图是三角形、俯视图是圆形,故符合题意;、主视图、俯视图都是圆,故不符合题意;故选:C【点睛】本题考查了简单组合体的三视图,解题的关键是掌握从正面看得到的图形是
8、主视图,从上面看得到的图形是俯视图5、A【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看,如图:故选:A【点睛】此题考查小正方体组成的几何体的三视图,正确掌握几何体三视图的画法是解题的关键6、B【分析】根据主视图即从物体正面观察所得的视图求解即可【详解】解:的主视图为,故选:B【点睛】本题主要考查由三视图判断几何体,解题的关键是掌握由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状7、C【分析】找到从左边看所得到的图形即可,注意所有看得到的棱用实线表示,看不到的部分用虚线表示【详解】解:从左边看到的
9、图形是:故选C【点睛】本题考查了简单组合体的三视图,理解看不到的且存在的是虚线解题的关键8、B【分析】根据几何体的三视图特点解答即可【详解】解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,该几何体最少有4+2+1=7个小正方体组成,故选:B【点睛】本题考查几何体的三视图,掌握三视图的特点是解答的关键9、C【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中【详解】解:从几何体的左面看,是一列两个矩形,矩形的中间用虚线隔开故选C【点睛】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置10、D【分析】左
10、视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.【详解】解:该几何体从左面看到的形状图有2列,第1列看到1个正方形,第2列看到2个正方形,所以左视图是D,故选D【点睛】本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.二、填空题1、6【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解答【详解】解: ,当王华在CG处时,RtDCGRtDBA,即,当王华在EH处时,RtFEHRtFBA,即,CGEH1.5米,CD1米,CE3米,E
11、F2米,设ABx,BCy,即,即2(y+1)y+5,解得:y3,则,解得,x6米即路灯A的高度AB6米【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度2、6【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,进而判断图形的形状,即可得出小正方体的个数【详解】从俯视图看至少有4个小正方体,从主视图看至少有6个小正方体,结合左视图,则只有6个小正方体故答案为:6【点睛】本题考查了学生对三视图的掌握程度和灵活运用能力,根据三视图确定物体的
12、形状,也考查学生空间想象能力3、162【分析】展开后底面一边长为7cm,求出底面的周长,用底面周长侧边长计算即可【详解】解:一个直九棱柱底面的每条边长都等于3cm,直九棱柱底面的周长为93=27cm;侧面积是276=162(cm2)故答案为162【点睛】本题考查了几何体的侧面积的应用,关键是掌握直棱柱侧面积公式底面周长侧棱长4、【分析】根据三视图画出图形,并且得出每列和每行的个数,然后相加即可得出答案【详解】解:根据三视图可画图如下:则组成这个几何体的小正方体的个数是:1+3+1+1+1+29;故答案为:9【点睛】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键5、15【分析】由
13、三视图可知这个立体图形是底面半径为3,高为4的圆锥,利用勾股定理求出其母线长,据此可以求得侧面积【详解】由三视图可知圆锥的底面半径为3,高为4,所以母线长为=5,所以侧面积为=35=15,故答案为:15【点睛】本题主要考查了由三视图确定几何体和求圆锥的侧面积,涉及勾股定理,牢记公式是解题的关键,难度不大三、解答题1、(1)圆柱体;(2)这个几何体的表面积为;(3)这个几何体的体积为【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根据圆柱的体积等于底面积高求解即可【详解】解:(1)由图可得,
14、主视图是长方形,左视图是长方形,俯视图是圆,这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,这个圆柱的表面积底面积2+侧面积;(3)这个圆柱的体积底面积高【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式2、见解析【分析】从正面看从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右2列正方形的个数依次为2,1;依此画出图形即可【详解】解:如图所示【点睛】本题考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面
15、看得到的图形3、(1)见解析;(2)12;(3)1400;1250,1550【分析】(1)根据三视图可画出几何体的形状图;(2)根据正方体的性质,每行每列的小正方体都相等,都是3个,这样正方体的小正方体的个数应该为27个,现在已有15个,这样再补12个即可;(3)从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最小时,每个位置数量尽量相等,可见解析中图,按图计算即可;从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最大时,每个位置数量尽量相差最大,可见解析中图,按图计算即可【详解】解:(1)由已知可得:(2)根据正方体的性质,每行每列都是3个小正方体,已知有(个)(个),故
16、答案为:12;(3)小正方体的棱长为5cm,小正方形的面积为,几何体表面积为,故答案为:;如图搭建此时表面积为最小,几何体最小表面积为;如图搭建此时表面积为最大,几何体最大表面积为;故答案为:,【点睛】本题考查了几何体的三视图,根据三视图计数,计算表面积,根据小正方体的数量计算表面积是本题的难点,了解什么情况表面积最小,什么情况表面积最大是解题关键4、(1)见详解;(2)旗杆DE的高度为9m【分析】(1)连接AC,然后根据投影相关知识可进行作图;(2)由(1)可知ACB=DFE,然后易得ABCDEF,进而根据相似三角形的性质可求解【详解】解:(1)连接AC,过点D作DFAC,交直线BC于点F,
17、线段EF即为DE的投影,如图所示:(2)DFAC,ACB=DFE,ABC=DEF=90,ABCDEF,AB=3m,BC=2m,EF=6m,DE=9m;答:旗杆DE的高度为9m【点睛】本题主要考查相似三角形的性质与判定及投影,熟练掌握相似三角形的性质与判定及投影是解题的关键5、(1)10;(2)见解析【分析】(1)数出小立方体的个数即可;(2)根据三视图的画法画出主视图、左视图、俯视图【详解】解:(1)根据几何体,在俯视图中标出:个,故答案为:10;(2)三视图如图所示:【点睛】考查简单几何体的三视图的画法,解题的关键是掌握主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形画三视图时还要注意“长对正、宽相等、高平齐”