难点详解北师大版八年级数学下册第六章平行四边形专题测试试题(精选).docx

上传人:知****量 文档编号:28203280 上传时间:2022-07-26 格式:DOCX 页数:24 大小:451.25KB
返回 下载 相关 举报
难点详解北师大版八年级数学下册第六章平行四边形专题测试试题(精选).docx_第1页
第1页 / 共24页
难点详解北师大版八年级数学下册第六章平行四边形专题测试试题(精选).docx_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《难点详解北师大版八年级数学下册第六章平行四边形专题测试试题(精选).docx》由会员分享,可在线阅读,更多相关《难点详解北师大版八年级数学下册第六章平行四边形专题测试试题(精选).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第六章平行四边形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平行四边形ABCD中,A30,那么B与A的度数之比为( )A4:1B5:1C6:1D7:12、下列A:B:C

2、:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:1D3:2:3:23、如图,正五边形ABCDE的对角线AC、BD交于点P,那么( )A96B100C108D1154、如图,在ABC和ADE中,ABAC,ADAE,且EADBAC80,若BDC160,则DCE的度数为()A110B118C120D1305、如图,在平面直角坐标系xOy中,已知直线AB与y轴交于点A(0,6),与x轴的负半轴交于点B,且BAO30, M、N是该直线上的两个动点,且MN2,连接OM、ON,则MON周长的最小值为 ( )A23B22C22D56、如图,A+B+C+D+E

3、+F的度数为()A180B360C540D不能确定7、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D88、下列图形中,三角形ABC和平行四边形ABDE面积相等的是()ABCD9、如图,在ABC中,点E,F分别是AB,AC的中点已知B55,则AEF的度数是()A75B60C55D4010、平行四边形OABC在平面直角坐标系中的位置如图所示,AOC45,OAOC,则点B的坐标为()A(,1)B(1,)C(1,1)D(1,1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个三角形三边长之比为456,三边中点连线组成的三角形的周长为30c

4、m,则原三角形最大边长为_cm2、已知一个正多边形内角的度数为108,则它的边数为_3、一个多边形的内角和比四边形的内角和多,并且这个多边形的各内角都相等,则这个多边形的每个外角等于_4、正五边形的一个内角与一个外角的比_5、把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数可能是 _三、解答题(5小题,每小题10分,共计50分)1、ABC和ADE均为等腰直角三角形,BACDAE90,将ADE绕点A逆时针旋转一周,连接DB,将线段DB绕点D逆时针旋转90得DF,连接EF(1)如图1,当D在AC边上时,线段CD与EF的关系是 , (2)如图2,当D在ABC的内部时

5、,(1)的结论是否成立?说明理由;(3)当AB3,AD,DAC 45时,直接写出DEF的面积2、如图,在ABC中,AD是BC边上的中线,ADC的周长比ABD的周长少6cm,AB与AC的和为18cm,求AC的长3、小刚从点A出发,前进10米后向右转60,再前进10米后又向右转60,按照这样的方式一直走下去,他能回到A点吗?当他第一次回到A点,他走了多少米?4、如图的网格纸中,每个小方格都是边长为1个单位的正方形,三角形ABC的三个顶点都在格点上(每个小方格的顶点叫格点)(1)画出三角形ABC向上平移4个单位后的三角形A1B1C1;(2)画出三角形A1B1C1向左平移5个单位后的三角形A2B2C2

6、;(3)经过(1)次平移线段AC划过的面积是 5、若一个多边形的内角和与外角的和是1440,求这个多边形的边数-参考答案-一、单选题1、B【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180-A=150,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补2、D【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形

7、的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法3、C【分析】先根据正多边形的内角和求出的度数,再根据三角形的内角和定理可得的度数,同样的方法可得的度数,然后根据三角形的内角和定理、对顶角相等即可得【详解】解:五边形是正五边形,同理可得:,故选:C【点睛】本题考查了正多边形的内角和,熟练掌握正多边形的内角和是解题关键4、C【分析】先根据四边形的内角和可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据角的和差即可得【详解】解:在四边形中,即,在和中,故选:C【点睛】本题考查了四边形的内角和、三角形全

8、等的判定定理与性质,正确找出两个全等三角形是解题关键5、B【详解】解:如图作点O关于直线AB的对称点O,作且,连接OC交AB于点D,连接ON,MO, 四边形MNOC为平行四边形,在OMC中,即,当点M到点D的位置时,即当O、M、C三点共线,取得最小值,设,则,解得:,即:,解得:,在中,即:,故选:B【点睛】题目主要考查轴对称及平行线、平行四边形的性质,勾股定理解三角形,角的直角三角形性质,理解题意,作出相应图形是解题关键6、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:设BE与DF交于点M,BE与AC交于

9、点N, , , 故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360是解题的关键7、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线

10、平行于第三边,且等于第三边的一半是解题的关键8、C【分析】根据三角形的面积公式和平行四边形的面积公式解答即可【详解】解:三角形ABC的面积,平行四边形ABDE的面积428,不相等;三角形ABC的面积,平行四边形ABDE的面积428,相等;三角形ABC的面积,平行四边形ABDE的面积428,相等;三角形ABC的面积,平行四边形ABDE的面积428,相等;故选:C【点睛】此题考查平行四边形的性质,关键是根据三角形的面积公式和平行四边形的面积公式解答9、C【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,A

11、EF=B=55,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键10、C【分析】作,求得、的长度,即可求解【详解】解:作,如下图:则在平行四边形中,为等腰直角三角形则,解得故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解二、填空题1、24【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可【详解】 如图,H、I、J分别为BC,AC,AB的中点,又AB:AC:BC=4:5:6,即BC边最长故填24【点

12、睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半2、5【分析】根据相邻的内角与外角互为邻补角求出每一个外角的度数为72,再用外角和360除以72,计算即可得解【详解】解:正多边形的每个内角等于108,每一个外角的度数为18010872,边数360725,这个正多边形是正五边形故答案为:5【点睛】本题主要考查了正多边形的外角和,熟记多边形外角和为360度是解题的关键3、45【分析】首先由题意得出等量关系,即这个多边形的内角和比四边形的内角和多720,由此列出方程解出边数,进一步可求出它每一个内角的度数【详解】解:设这个多边形边数为n,则(n-2)180=360+7

13、20,解得:n=8,这个多边形的每个内角都相等,它每一个外角也相等,度数为3608=45故答案为:45【点睛】本题主要考查多边形的内角和外角解题的关键是根据题意列出方程从而解决问题4、【分析】根据公式分别求出一个内角与一个外角的度数,即可得到答案【详解】解:正五边形的一个内角的度数为,正五边形的一个外角的度数为,正五边形的一个内角与一个外角的比为,故答案为:【点睛】此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键5、十七边形,或十八边形,或十九边形【分析】结合题意,根据多边形截角后边数的性质,分三种截下的方式分析,即可得到答案【详解】把一个多边形纸片沿一条直线

14、截下一个三角形后,变成一个十八边形,有三种截下的方式:下图为多边形局部图,如按下图所示沿虚线截下三角形:原多边形纸片的边数是:十七边形如按下图所示沿虚线截下三角形:原多边形纸片的边数是:十八边形如按下图所示沿虚线截下三角形:原多边形纸片的边数是:十九边形原多边形纸片的边数可能是:十七边形,或十八边形,或十九边形故答案为:十七边形,或十八边形,或十九边形【点睛】本题考查了多边形的知识;解题的关键是熟练掌握多边形的性质,从而完成求解三、解答题1、(1)CDEF,CD=EF;(2)结论成立,理由见解析;(3)1或2【分析】(1)如图所示,连接CE,延长BD交CE于H,先证明BADCAE得到BD=CE

15、,ABD=ACE,然后证明四边形CDFE是平行四边形,即可得到CDEF,CD=EF;(2)连接CE,延长BD交CE于点H,交AC于点G, 类似(1)进行证明即可;(3)分两种情况:当D在直线AC的左侧和当D在直线AC的右侧,分别讨论求解即可【详解】解:(1)CDEF ,CD=EF,理由如下:如图所示,连接CE,延长BD交CE于H,ABC和ADE均为等腰直角三角形,BACDAE90,AB=AC,AE=AD,BADCAE(SAS),BD=CE,ABD=ACE,ABD+ADB=90,ADB=CDH,ACE+CDH=90,BHC=90,BHE=90,由旋转的性质可得BDF=90,BD=FD,BDF=B

16、HE=90,BD=CE,DFCE,四边形CDFE是平行四边形,CDEF,CD=EF;(2)结论成立,理由如下:连接CE,延长BD交CE于点H,交AC于点G,BAC=DAE=90,DAB=EAC=90-DAC,AB=AC ,AD=AE,ADBAEC(SAS),BD=CE ,DBA=ECA,BGA+DBA=90,BGA=CGH ,DBA=ECA,CGH+ECA=90,DHE=90,由旋转的性质可得BDF=90,BD=FD,DFCE,DF=BD,DFCE,CD=CE, 四边形DCEF是平行四边形 CDEF,CD=EF;(3)如图3所示,当DAC=45时,设AC与DE交于H,ADE=90,EAC=AD

17、C=45,又AD=AE,;,由(2)可知四边形DFEC是平行四边形,;如图4所示,当DAC=45时,DAC=ADE=45,ACDE,同理可证四边形CEFD是平行四边形,综上所述,DEF的面积为1或2【点睛】本题主要考查了旋转的性质,等腰直角三角形的性质与判定,全等三角形的性质与判定,平行四边形的性质与判定,解题的关键在于能够正确作出辅助线构造平行四边形求解2、【分析】根据中线的定义知,结合三角形周长公式知;因为AB与AC的和为18cm,则可求出的长度【详解】解:AD是BC边上的中线,是的中点,ADC的周长比ABD的周长少6cm,即:cm,AB与AC的和为18cm,即:,得:cm【点睛】本题考查

18、了三角形的角平分线、中线和高,三角形一边的中点与此边所对顶点的连线叫做三角形中线3、60米【分析】先确定小刚所走路径为正多边形,然后再利用外角和定理计算出多边形的边数,进而可得答案【详解】解:前进10米后向右转60,多边形的边相等,每个内角=180-60=120,每个内角都相等,小刚所走路径为正多边形,设这个正多边形的边数为n,则60n360,解得n6,故他第一次回到出发点A时,共走了:10660(m)答:他能回到A点,当他第一次回到A点,他走了60米【点睛】本题考查生活的正多边形,掌握正多边形的定义是解题关键4、(1)见解析;(2)见解析;(3)16【分析】(1)先找出A、B、C三个点平移后

19、的位置,然后依次连接即可;(2)先找出、三个点平移后的位置,然后依次连接即可;(3)从图中可知线段AC划过的图形为平行四边形,根据平行四边形面积计算公式即可得【详解】解(1)先找出A、B、C三个点平移后的位置,然后依次连接即可,如图所示,即为所求;(2)先找出、三个点平移后的位置,然后依次连接即可,如图所示,即为所求;(3)线段AC划过的图形为平行四边形,故答案为:16【点睛】题目主要考查图形的平移方法及平行四边形的面积,熟练掌握图形的平移方法是解题关键5、这个多边形的边数为8【分析】设这个多边形的边数为n,根据多边形内角和及外角和可进行求解【详解】解:设这个多边形的边数为n,由题意得:,解得:,这个多边形的边数为8【点睛】本题主要考查多边形内角和与外角和,熟练掌握多边形的内角和与外角和是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁