《难点解析沪教版七年级数学第二学期第十四章三角形定向训练试题(含解析).docx》由会员分享,可在线阅读,更多相关《难点解析沪教版七年级数学第二学期第十四章三角形定向训练试题(含解析).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版七年级数学第二学期第十四章三角形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,的相关数据如图所示,则下列选项正确的是( )ABCD2、如图,已知,要使,添加的条件不正确的是( )AB
2、CD3、如图,若绕点A按逆时针方向旋转40后与重合,则( ) A40B50C70D1004、若三条线段中a3,b5,c为奇数,那么以a、b、c为边组成的三角形共有( )A1个B2个C3个D4个5、有两边相等的三角形的两边长为,则它的周长为( )ABCD或6、如图,在ABC中,AB=AC,D是BC的中点,B=35,则BAD=( )A110B70C55D357、一副三角板如图放置,点A在DF的延长线上,DBAC90,E30,C45,若BC/DA,则ABF的度数为()A15B20C25D308、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( )A锐角三角形B直角三角形C钝角三角形D等
3、腰三角形9、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形他的依据是( )ABCD10、如图,在RtABC中,ACB90,BAC40,直线ab,若BC在直线b上,则1的度数为()A40B45C50D60第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,ABC的顶点A、B、C的坐标分别为(0,3)、(4,0)、(0,0),AB=5,点P为x轴上一点,若使得ABP为等腰三角形,那么点P的坐标除点(,0)外,还可以是_2、如图,点D是的平分线OC上一点,过点D作交射线OA于点E,则线段DE与OE的数量关系为:DE
4、_OE(填“”或“”或“”)3、已知a,b,c是的三边长,满足,c为奇数,则_4、如图,在RtABC中,C90,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若EPF45,连接EF,当AC6,BC8,AB10时,则CEF的周长为 _5、如图,BD,CE是等边三角形ABC的中线,BD,CE交于点F,则_三、解答题(10小题,每小题5分,共计50分)1、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形为此,请你完成下列问题:(1)已知:如图,在中,直线BD平分交AC于点D求证:与都是
5、等腰三角形;(2)在证明了该命题后,小尹同学发现:图、两个等腰三角形也具有这种特性,请你在图、图中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小尹又发现:还有一些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征2、如图,点A,B,C,D在一条直线上,求证:3、如图,在ABC中, ABAC,AD是ABC的中线,BE平分ABC交AD于点E,连接EC求证:CE平分ACB4
6、、如图,在中,是的平分线,点在边上,且()求证:;()若,求的大小5、在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90,则BCE= 度;(2)设,如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直线BC上(线段BC之外)移动,则,之间有怎样的数量关系?请直接写出你的结论6、如图,在等边ABC中,点P是BC边上一点,BAP(3060),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE(1)依题意补全图形,并直接
7、写出AEB的度数;(2)用等式表示线段AE,BE,CE之间的数量关系,并证明分析:涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质通过截长补短,利用60角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的请根据上述分析过程,完成解答过程7、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,AEGAGE,CDGC(1)求证:AB/CD;(2)若AGE+AHF=180,求证:B=C;(3)在(2)的条件下,若BFC=4C,求D的度数8、已知,如图,ABAD,BD,1260 (1)求证:ADEABC; (2)求证:AECE9、如图,是等边三角
8、形,D点是BC上一点,于点E,CE交AD于点P求的度数10、在等腰中,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,点D,E在直线AC两旁,连接CE(1)如图1,当时,直接写出BC与CE的位置关系;(2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明-参考答案-一、单选题1、D【分析】根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项【详解】解:,在与FED中,FED,A、B、C三个选项均不能证明,故选:D【点睛】题目主要考查三角形内角和
9、定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键2、D【分析】已知条件ABAC,还有公共角A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可【详解】解:A、添加BDCE可得ADAE,可利用利用SAS定理判定ABEACD,故此选项不合题意;B、添加ADCAEB可利用AAS定理判定ABEACD,故此选项不合题意;C、添加BC可利用ASA定理判定ABEACD,故此选项不合题意;D、添加BECD不能判定ABEACD,故此选项符合题意;故选:D【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),
10、掌握三角形全等的判定方法是解题关键3、C【分析】根据旋转的性质,可得 , ,从而得到,即可求解【详解】解:绕点A按逆时针方向旋转40后与重合, , , 故选:C【点睛】本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键4、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数【详解】解:c的范围是:53c5+3,即2c8c是奇数,c3或5或7,有3个值则对应的三角形有3个故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键5、D【分析】有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪是腰,所
11、以有两种情况,需要分类讨论【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为综上所述,该等腰三角形的周长是或故选:D【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论6、C【分析】根据等腰三角形三线合一的性质可得ADBC,然后利用直角三角形两锐角互余的性质解答【详解】解:ABAC,D是BC的中点,ADBC,B35,BAD903555故选:C【点睛】本题主要考查了等腰三角形三线合一的性质,直角三
12、角形两锐角互余的性质,是基础题,熟记性质是解题的关键7、A【分析】先求出EFD=60,ABC=45,由BCAD,得到EFD=FBC=60,则ABF=FBC-ABC=15【详解】解:DBAC90,E30,C45,EFD=60,ABC=45,BCAD,EFD=FBC=60,ABF=FBC-ABC=15,故选A【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键8、B【分析】根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案【详解】如图,在ABC中,CD是边AB上的中线AD=CD=BDA=DCA,B=DCBA+ACB+B=180 A+DCA
13、+DCB+B=180即2A+2B=180A+B=90ACB=90ABC是直角三角形故选:B【点睛】本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键9、C【分析】根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形【详解】根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,根据两个三角形对应的两角及其夹边相等,两个三角形全等,即故选C【点睛】本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键10、C【分析】根据三角形内角和定理确定,然后利用平行线的性质求解即可【详解】解:,故选:C【点睛】题目主要考查平行线的性质,
14、三角形内角和定理等,熟练掌握运用平行线的性质是解题关键二、填空题1、(,0)、(,0)、(9,0)【分析】先表示出PB=|a-4|,PB2=a2+9,AB=5,再分三种情况当PB=AB时当PA=PB时,当PA=AB时,讨论计算即可【详解】设P(a,0),A(0,3),B(4,0),PB=|a-4|,PA2=a2+9,AB=5,ABP是等腰三角形,当PB=AB时,|a-4|=5,a=-1或9,P(-1,0)或(9,0),当PA=PB时,(a-4)2=a2+9,a=,P(,0),当PA=AB时,a2+9=25,a=4(舍)或a=-4,P(-4,0)即:满足条件的点P的坐标为(-1,0)、(-4,0
15、)、(9,0)【点睛】本题考查了平面直角坐标系中点的坐标规律,等腰三角形的性质,分类讨论和用方程思想解决问题是解本题的关键2、【分析】首先由平行线的性质求得EDO=DOB,然后根据角平分线的定义求得EOD=DOB,最后根据等腰三角形的判定和性质即可判断【详解】解:EDOB,EDO=DOB,D是AOB平分线OC上一点,EOD=DOB,EOD=EDO,DE=OE,故答案为:=【点睛】本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行线的性质和角平分线的定义求得EOD=EDO是解题的关键3、7【分析】绝对值与平方的取值均0,可知,可得a、b的值,根据三角形三边关系求出c的取值范围,
16、进而得到c的值【详解】解:,由三角形三边关系可得为奇数故答案为:7【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点解题的关键是确定所求边长的取值范围4、4【分析】根据题意过点P作PMBC于M,PNAC于N,PKAB于K,在EB上取一点J,使得MJ=FN,连接PJ,进而利用全等三角形的性质证明EF=EM+EN,即可得出结论【详解】解:如图,过点P作PMBC于M,PNAC于N,PKAB于K,在EB上取一点J,使得MJFN,连接PJBP平分BC,PA平分CAB,PMBC,PNAC,PKAB,PMPK,PKPN,PMPN,CPMCPNC90,四边形PMCN是矩形,四边形PMCN是正方形
17、,CMPM,MPN90,在PMJ和PNF中,PMJPNF(SAS),MPJFPN,PJPF,JPFMPN90,EPF45,EPFEPJ45,在PEF和PEJ中,PEFPEJ(SAS),EFEJ,EFEM+FN,CEF的周长CE+EF+CFCE+EM+CF+FN2EM2PM,SABCBCAC(AC+BC+AB)PM,PM2,ECF的周长为4,故答案为:4【点睛】本题考查角平分线的性质定理,正方形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问5、120【分析】等边三角形中线与角平分线合一,有,由可求得结果【详解】解:是等边三角形BD,CE是等边三角形AB
18、C的中线又故答案为:【点睛】本题考查了等边三角形的性质,角度的计算解题的关键在于熟练利用等边三角形三线合一的性质三、解答题1、(1)见详解;(2)见详解;(3)见详解;(4)见详解;【分析】(1)根据等边对等角,及角平分线定义易得1=2=36,C=72,那么BDC=72,则可得AD=BD=CB,所以ABD与DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108的角分为36和72即可;(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给
19、的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式(1)证明:在ABC中,AB=AC,ABC=C,A=36,ABC=C=(180-A)=72,BD平分ABC,1=2=363=1+A=72,1=A,3=C,AD=BD,BD=BC,ABD与BDC都是等腰三角形(2)解:如下图所示:(3)解:如图所示:(4)解:特征一:直角三角形(直角边不等);特征二:2倍内角关系,在ABC中,A=2B,0B45,其中,B30;【点睛】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论2、见解析【
20、分析】根据平行线的性质得出,运用“角角边”证明AEBCFD即可【详解】证明:,在AEB和CFD中,AEBCFD,【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明3、见解析【分析】根据等腰三角形的性质,可得ADB=ADC=90,ABC=ACB,BD=CD,从而得到BDECDE,进而得到DCE=DBE,再由BE平分ABC,可得 ,进而得到,即可求证【详解】解:ABAC,AD是ABC的中线,ADB=ADC=90,ABC=ACB,BD=CD,DE=DE,BDECDE,DCE=DBE,BE平分ABC, ,CE平分ACB【点睛】本题主要考查了等腰三角形的性质,全等三
21、角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键4、()见解析;()【分析】()由CD是的平分线得出,由得出从而得出,由平行线的判断即可得证;()由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案【详解】()CD是的平分线,;(),【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键5、(1)90;(2),见解析;或【分析】(1)由等腰直角三角形的性质可得ABCACB45,由“SAS”可证BADCAE,可得ABCACE45,可求BCE的度数;(2)由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结
22、论;分两种情况,由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论【详解】解:(1),AB=AC,AD=AE, 在和中,(2)或 理由:,即在和中, ,如图:,即在和中, ,综上所述:点D在直线BC上移动,+180或【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键6、(1)图见解析,AEB60;(2)AEBECE,证明见解析【分析】(1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,AEC=AEB,求出,即可求出,再由进行求解即可;(2)如图,在AE上截取
23、EGBE,连接BG先证明BGE是等边三角形,得到BGBEEG,GBE60 再证明ABGCBE,即可证明ABGCBE得到AGCE,则AEEGAGBECE【详解】解:(1)依题意补全图形,如图所示:连接AD,ABC是等边三角形,BAC=60,AB=AC,B、D关于AP对称,AD=AB=AC,AEC=AEB,AEB60 (2)AEBECE 证明:如图,在AE上截取EGBE,连接BGAEB60,BGE是等边三角形,BGBEEG,GBE60 ABC是等边三角形,ABBC,ABC60,ABGGBCGBCCBE60,ABGCBE 在ABG和CBE中,ABGCBE(SAS),AGCE,AEEGAGBECE【点
24、睛】本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键7、(1)见解析;(2)见解析;(3)108【分析】(1)根据对顶角相等结合已知条件得出AEGC,根据内错角相等两直线平行即可证得结论;(2)由AGE+AHF=180等量代换得DGC+AHF=180可判断EC/BF,两直线平行同位角相等得出B=AEG,结合(1)得出结论;(3)由(2)证得EC/BF,得BFC+C=180,求得C的度数,由三角形内角和定理求得D的度数【详解】证明:(1)AEG=AGE,C=DGC,AGE=DGCAEG=
25、C AB/CD(2)AGE=DGC,AGE+AHF=180DGC+AHF=180EC/BF B=AEG由(1)得AEG=C B=C(3)由(2)得EC/BFBFC+C=180BFC=4C C=36 DGC=36C+DGC+D=180 D=108【点睛】此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键8、(1)见解析;(2)见解析【分析】(1)根据12可推出DAE=BAC,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AEAC,结合260可推出AEC为等边三角形,据此证明【详
26、解】(1)证明:12 1+2+ 即DAE=BAC在ADE和ABC中 ADEABC(ASA)(2)证明:ADEABC AEAC又260AEC为等边三角形AECE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法9、【分析】由题意易得,则有,然后可得,进而可证,则有,最后问题可求解【详解】解:是等边三角形,(SAS),【点睛】本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键10、(1)(2)或,见解析【分析】(1)根据已知条件求出B=ACB=45,证明BADCAE,得到ACE=B=45,求出BCE=ACB+ACE=90,即可得到结论;(2)根据题意作图即可,证明得到,推出延长EF到点G,使,证明,推出由此得到同理可证(1)解:,B=ACB=45,即BAD=CAE,BADCAE,ACE=B=45,BCE=ACB+ACE=90,;(2)解:如图,补全图形;证明:,又,延长EF到点G,使,如图,同理可证【点睛】此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键掌握分类思想解题是难点