难点解析沪科版九年级数学下册第24章圆章节测评练习题(无超纲).docx

上传人:知****量 文档编号:28200010 上传时间:2022-07-26 格式:DOCX 页数:32 大小:1.23MB
返回 下载 相关 举报
难点解析沪科版九年级数学下册第24章圆章节测评练习题(无超纲).docx_第1页
第1页 / 共32页
难点解析沪科版九年级数学下册第24章圆章节测评练习题(无超纲).docx_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《难点解析沪科版九年级数学下册第24章圆章节测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点解析沪科版九年级数学下册第24章圆章节测评练习题(无超纲).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形内接于,如果它的一个外角,那么的度数为( )ABCD2、如图,AB,BC,CD分别与O相切于E、F、G三点

2、,且ABCD,BO3,CO4,则OF的长为()A5BCD3、如图,在中,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是( )ABCD4、如图,点P是等边三角形ABC内一点,且PA3,PB4,PC5,则APB的度数是( )A90B100C120D1505、如图是一个含有3个正方形的相框,其中BCDDEF90,AB2,CD3,EF5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )ABCD6、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定7、如图,在RtABC中,ABC90,AB6,BC8把ABC绕点A逆时针方向旋转到ABC,点B恰好落

3、在AC边上,则CC()A10B2C2D48、如图,在RtABC中,ACB90,A30,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A3B1CD9、如图,四边形ABCD内接于O,若ADC=130,则AOC的度数为( )A25B80C130D10010、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90后,与x轴相交于点C,我们将图像过点A,

4、B,C的二次函数叫做与这个一次函数关联的二次函数如果一次函数的关联二次函数是(),那么这个一次函数的解析式为_2、在平面直角坐标系中,点关于原点对称的点的坐标是_3、如图,将RtABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,ABC38,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 _4、如图,AB为O的弦,AOB=90,AB=a,则OA=_,O点到AB的距离=_5、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_三、解答题(5小

5、题,每小题10分,共计50分)1、如图,在O中,点E是弦CD的中点,过点O,E作直径AB(AEBE),连接BD,过点C作CFBD交AB于点G,交O于点F,连接AF求证:AGAF2、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则_3、将锐角为45的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF(1)在三角板旋转过程中,当MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系

6、;(2)在三角板旋转过程中,当MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当MPN的一边恰好经过BC边的中点时,试求线段EF的长4、如图,已知在中,D、E是BC边上的点,将绕点A旋转,得到,连接(1)当时,时,求证:;(2)当时,与有怎样的数量关系?请写出,并说明理由(3)在(2)的结论下,当,BD与DE满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必证明)5、已知:RtABC中,ACB90,ABC60,将ABC绕点B按顺时针方向旋转(1)当C转到AB边上点C位置时,A

7、转到A,(如图1所示)直线CC和AA相交于点D,试判断线段AD和线段AD之间的数量关系,并证明你的结论(2)将RtABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将RtABC旅转至A、C、A三点在一条直线上时,请直接写出此时旋转角的度数-参考答案-一、单选题1、D【分析】由平角的性质得出BCD=116,再由内接四边形对角互补得出A=64,再由圆周角定理即可求得BOD=2A=128【详解】四边形内接于又故选:D【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆

8、周角等于它所对的圆心角的一半2、D【分析】连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得【详解】解:连接OF,OE,OG,AB、BC、CD分别与相切,且,OB平分,OC平分,SOBC=12OBOC=12BCOF,故选:D【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键3、C【分析】过点A作ACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到 ,可得到点 ,再根据旋转的性质,即可求解【详解

9、】解:如图,过点A作ACx轴于点C, 设 ,则 , , , ,解得: , , ,点 ,将绕原点O顺时针旋转90,则旋转后点A的对应点的坐标是,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型4、D【分析】将绕点逆时针旋转得,根据旋转的性质得,则为等边三角形,得到,在中,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数【详解】解:为等边三角形,可将绕点逆时针旋转得,如图,连接,为等边三角形,在中,为直角三角形,且,故选:D【点睛】本题考查了旋转的性质、等边三角形,解题的关

10、键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等5、A【分析】如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 设 而AB2,CD3,EF5,结合正方形的性质可得:而 又 而 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质

11、,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.6、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知dr,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr7、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB,BC= BC,从而求出BC,即可在RtBCC中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可

12、知,AB= AB=6,BC= BC=8,BC=10-6=4,在RtBCC中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键8、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键9、D【分析】根据圆内接四边形的性质求出B的度数,根据圆周角定理计算即可

13、【详解】解:四边形ABCD内接于O,B+ADC=180,ADC=130,B=50,由圆周角定理得,AOC=2B=100,故选:D【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键10、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键二、填空题1、【分析

14、】由题意可知二次函数与坐标轴的三个交点坐标为(0,k),(1,0),(-k,0),将其代入抛物线()即可得m、k的二元一次方程组,即可解出,故这个一次函数的解析式为【详解】一次函数与y轴的交点为(0,k),与x轴的交点为(1,0)绕O点逆时针旋转90后,与x轴的交点为(-k,0)即(0,k),(1,0),(-k,0)过抛物线()即得将代入有整理得解得k=3或k=-1(舍)将k=3代入得故方程组的解为则一次函数的解析式为故答案为:【点睛】本题考查了一次函数和二次函数的图象及其性质,解二元一次方程组,结合旋转的性质以及图象得出抛物线与坐标轴的三个交点坐标是解题的关键2、(3,4)【分析】关于原点对

15、称的点,横坐标与纵坐标都互为相反数【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4)【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数3、76或142【分析】设AB的中点为O,连接OD,则BOD为点D在量角器上对应的角,根据圆周角定理得BOD=2BCD,根据等腰三角形的性质分BC为底边和BC为腰求BCD的度数即可【详解】解:设AB的中点为O,连接OD,则BOD为点D在量角器上对应的角,RtABC的斜边AB与量角器的直径恰好重合,A、C、B、D四点共圆,圆心为点O,BOD=2BC

16、D,若BC为等腰三角形的底边时,如图射线CD1,则BCD1=ABC=38,连接OD1,则BOD1=2BCD1=76;若BC为等腰三角形的腰时,当ABC为顶角时,如图射线CD2,则BCD2=(180-ABC)2=71,连接OD2,则BOD2=2BCD2=142,当ABC为底角时,BCD=180-2ABC=104,不符合题意,舍去,综上,点D在量角器上对应的度数是76或142,故答案为:76或142【点睛】本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键4、 【分析】过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA

17、=OB,且AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离【详解】解:过O作OCAB,则有C为AB的中点,OA=OB,AOB=90,AB=a,根据勾股定理得: OA2+OB2=AB,OA=,在RtAOC中,OA=,AC=AB=,根据勾股定理得:OC=故答案为:;【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半

18、径及弦心距构造直角三角形,利用勾股定理来解决问题5、2【分析】根据扇形的面积公式S,代入计算即可【详解】解:“完美扇形”的周长等于6,半径r为2,弧长l为2,这个扇形的面积为:2答案为:2【点睛】本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可三、解答题1、见解析【分析】由题意易得ABCD,则有,由平行线的性质可得,然后可得,进而问题可求证【详解】证明:AB为O的直径,点E是弦CD的中点,ABCD,CFBD,【点睛】本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周

19、角定理是解题的关键2、2+【分析】连接AC,CM,AB,过点C作CHOA于H,设OC=a利用勾股定理构建方程解决问题即可【详解】解:连接AC,CM,AB,过点C作CHOA于H,设OC=aAOB=90,AB是直径,A(-4,0),B(0,2),AMC=2AOC=120,在RtCOH中,在RtACH中,AC2=AH2+CH2,a=2+ 或2-(因为OCOB,所以2-舍弃),OC=2+,故答案为:2+【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题3、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为或【分析】(1)延长FD至G,使

20、DG=BE,连接AG,先证ABEADG,再证GAFEAF即可;(2)在DC上截取DH=BE,连接AH,先证ADHABE,再证HAFEAF即可;(3)分两种情形分别求解即可解决问题【详解】解:(1)结论:EF=BE+DF理由:延长FD至G,使DG=BE,连接AG,如图,ABCD是正方形,AB=AD,ABE=ADG=DAB=90,ABEADG(AAS),AE=AG,DAG=EAB,EAF=45,DAF+EAB=45,DAF+DAG=45,GAF=EAF=45,AF=AF,GAFEAF(AAS),EF=GF,GF=DF+DG=DF+BE,即:EF=DF+BE;(2)结论:EF=DF-BE理由:在DC

21、上截取DH=BE,连接AH,如图,AD=AB,ADH=ABE=90,ADHABE(SAS),AH=AE,DAH=EAB,EAF=EAB+BAF=45,DAH+BAF=45,HAF=45=EAF,AF=AF,HAFEAF(SAS),HF=EF,DF=DH+HF,EF=DF-BE;(3)当MA经过BC的中点E时,同(1)作辅助线,如图:设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x在RtEFC中,(x+2)2=(4-x)2+22,x=,EF=x+2=当NA经过BC的中点G时,同(2)作辅助线,设BE=x,由(2)的结论得EC=4+x,EF=FH,K为BC边的中点,CK=BC=2,同理

22、可证ABKFCK(SAS),CF=AB=4,EF=FH=CF+CD-DH=8-x,在RtEFC中,由勾股定理得到:(4+x)2+42=(8-x)2,x=,EF=8-=综上,线段EF的长为或【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题4、(1)见解析;(2)DAEBAC,见解析;(3)DEBD,见解析【分析】(1)根据旋转的性质可得ADAD,CADBAD,然后求出DAE60,从而得到DAEDAE,再利用“边角边”证明ADE和ADE全等,根据全等三角形对

23、应边相等证明即可;(2)根据旋转的性质可得ADAD,再利用“边边边”证明ADE和ADE全等,然后根据全等三角形对应角相等求出DAEDAE,然后求出BADCAEDAE,从而得解;(3)求出DCE90,然后根据等腰直角三角形斜边等于直角边的倍可得DECD,再根据旋转的性质解答即可【详解】(1)证明:ABD绕点A旋转得到ACD,ADAD,CADBAD,BAC120,DAE60,DAECADCAEBADCAEBACDAE1206060,DAEDAE,在ADE和ADE中, ,ADEADE(SAS),DEDE;(2)解:DAE BAC理由如下:在ADE和ADE中, ,ADEADE(SSS),DAEDAE,

24、BADCAECADCAEDAEDAE,DAEBAC;(3)解:BAC90,ABAC,BACBACD45,DCE454590,DEC是等腰直角三角形,DECD,由(2)DEDE,ABD绕点A旋转得到ACD,BDCD,DEBD【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键5、(1),证明见解析(2)成立,证明见解析(3)【分析】(1)设,先根据直角三角形的性质可得,再根据旋转的性质可得,然后根据等边三角形的判定与性质可得,都是等边三角形,从而可得,由此即可得出结论;(2

25、)在上截取,连接,先根据旋转的性质可得,从而可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,然后根据三角形的外角性质可得,最后根据等腰三角形的判定可得,由此即可得出结论;(3)如图(见解析),先根据旋转的性质可得,再根据直角三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据旋转角即可得(1)解:,证明如下:设,在中,由旋转的性质得:,和都是等边三角形,是等边三角形,;(2)解:成立,证明如下:如图,在上截取,连接,由旋转的性质得:,在和中,;(3)解:如图,当点三点在一条直线上时,由旋转的性质得:,在和中,则旋转角【点睛】本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁