精品试卷沪教版七年级数学第二学期第十四章三角形专项训练练习题(无超纲).docx

上传人:知****量 文档编号:28199236 上传时间:2022-07-26 格式:DOCX 页数:33 大小:1.02MB
返回 下载 相关 举报
精品试卷沪教版七年级数学第二学期第十四章三角形专项训练练习题(无超纲).docx_第1页
第1页 / 共33页
精品试卷沪教版七年级数学第二学期第十四章三角形专项训练练习题(无超纲).docx_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《精品试卷沪教版七年级数学第二学期第十四章三角形专项训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品试卷沪教版七年级数学第二学期第十四章三角形专项训练练习题(无超纲).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点E在线段AB上,则的度数为()A20B25C30D402、根据下列已知条件,不能画出唯一的是( )A,

2、B,C,D,3、如图,在中,AD、AE分别是边BC上的中线与高,CD的长为5,则的面积为( )A8B10C20D404、如图,ACBC,C,DEAC于E,FDAB于D,则EDF等于()AB90C90D18025、下列说法错误的是( )A任意一个直角三角形都可以被分割成两个等腰三角形B任意一个等腰三角形都可以被分割成两个等腰三角形C任意一个直角三角形都可以被分割成两个直角三角形D任意一个等腰三角形都可以被分割成两个直角三角形6、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,添加下列条件不能判定的是( )ABCD7、定理:三角形的一个外角等于与它不相邻的两个内角的和已知:如图,ACD是A

3、BC的外角求证:ACDA+B证法1:如图,A70,B63,且ACD133(量角器测量所得)又13370+63(计算所得)ACDA+B(等量代换)证法2:如图,A+B+ACB180(三角形内角和定理),又ACD+ACB180(平角定义),ACD+ACBA+B+ACB(等量代换)ACDA+B(等式性质)下列说法正确的是()A证法1用特殊到一般法证明了该定理B证法1只要测量够100个三角形进行验证,就能证明该定理C证法2还需证明其他形状的三角形,该定理的证明才完整D证法2用严谨的推理证明了该定理8、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)()若ABC是等腰直角三角形,且,

4、当时,点C的横坐标m的取值范围是( )ABCD9、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )A3cmB6cmC10cmD12cm10、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将BEF对折,点B落在直线EF上的点B处,得折痕EM,将AEF对折,点A落在直线EF上的点A处,得折痕EN,则图中与BME互余的角有()A2个B3个C4个D5个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,ACB90,BAC30,BC6,将ABC绕点C顺时针旋转30得到ABC,A、B分别与A、B对应,CA交

5、AB于点M,则CM的长为 _2、如图,在中,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_3、在ABC中,已知B是A的2倍,C比A大20,则A=_4、如图,在ABC中,C62,ABC两个外角的角平分线相交于G,则G的度数为_5、如图,上午9时,一艘船从小岛A处出发,以12海里/时的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34、68方向,则小岛B处到灯塔C的距离是_海里三、解答题(10小题,每小题5分,共计50分)1、如图,求证:2、如图,在中,是的平分线,点在边上,且()求证:;

6、()若,求的大小3、如图,点C是线段AB上一点,与都是等边三角形,连接AE,BF(1)求证:;(2)若点M,N分别是AE,BF的中点,连接CM,MN,NC依题意补全图形;判断的形状,并证明你的结论4、中,CD平分,点E是BC上一动点,连接AE交CD于点D(1)如图1,若,AE平分,则的度数为_;(2)如图2,若,则的度数为_;(3)如图3,在BC的右侧过点C作,交AE延长线于点F,且,试判断AB与CF的位置关系,并证明你的结论5、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,BAECAD,ABAE,ADAC(1)求证:DECBAE;(2)如图2,当BAECAD30,ADAB

7、时,延长DE、AB交于点G,请直接写出图中除ABE、ADC以外的等腰三角形6、如图,在中,、分别是上的高和中线,求的长7、阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点易证得大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、三点共线,进而可证明,故任务:如图3,在四边形中,以为顶点的,、与、边分别交于、两点请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由8、

8、一个零件形状如图所示,按规定应等于75,和应分别是18和22,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由9、如图,是的角平分线,于点(1)用尺规完成以下基本作图:过点作于点,连接交于点(不写作法,保留作图痕迹)(2)在(1)中所作的图形中,求证:10、如图,等边ABC中,点D在BC上,CE=CD,BCE=60,连接AD、BE(1)如图1,求证:AD=BE;(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120的角-参考答案-一、单选题1、C【分析】根据全等三角形的性质可证得BC=CE,ACB=DCE即

9、ACD=BCE,根据等腰三角形的性质和三角形的内角和定理求解B=BEC和BCE即可【详解】解:,BC=CE,ACB=DCE,B=BEC,ACD=BCE,ACD=BCE=180275=30,故选:C【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键2、B【分析】根据三角形存在的条件去判断【详解】,满足ASA的要求,可以画出唯一的三角形,A不符合题意;,A不是AB,BC的夹角,可以画出多个三角形,B符合题意;,满足SAS的要求,可以画出唯一的三角形,C不符合题意;,AB最大,可以画出唯一的三角形,D不符合题意;故选B【点睛

10、】本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键3、C【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可【详解】解:AD是边BC上的中线,CD的长为5,CB=2CD=10,的面积为,故选:C【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长4、B【分析】ACBC,C,DEAC于E,FDAB于D,有,即可求得角度【详解】解:由题意知:,故选B【点睛】本题考查了等腰三角形的性质,几何图形中角度的计算解题的关键在于确定各角度之间的数量关系5、B【分析】根据等腰三角形和直角三角形的性质判断各选项即可得出答案【详解】解:、任意一个

11、直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;故选:B【点睛】本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断6、A【分析】根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可【详解】解:A. ,不能根据SSA证明三角形全等,故该选项符合题意;B. ,故能判定,不符合题意;C. ,,故能判定,不符合题意;

12、D.,故能判定,不符合题意;故选A【点睛】本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键7、D【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键

13、.8、B【分析】过点作轴于,由“”可证,可得,即可求解【详解】解:如图,过点作轴于,点,是等腰直角三角形,且,在和中,故选:B【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形9、C【分析】设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为cm,则 所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.10、C【分析】先由翻折的性质得到AEN=AEN,BEM=BEM,从而可知NEM=

14、180=90,然后根据余角的定义找出BME的余角即可【详解】解:由翻折的性质可知:AEN=AEN,BEM=BEMNEM=AEN+BEM=AEA+BEB=180=90由翻折的性质可知:MBE=B=90由直角三角形两锐角互余可知:BME的一个余角是BEMBEM=BEM,BEM也是BME的一个余角NBF+BEM=90,NEF=BMEANE、ANE是BME的余角综上所述,BME的余角有ANE、ANE、BEM、BEM故选:C【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键二、填空题1、【分析】根据旋转的性质可得,所以,由题意可得:,为等边三角形,即可求解【详解】解:,由旋转的性

15、质可得,为等边三角形,故答案为:【点睛】此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解2、6cm或12cm【分析】先根据题意得到BCA=PAQ=90,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有ACBQAP和ACBPAQ两种情况,由此利用全等三角形的性质求解即可【详解】解:AX是AC的垂线,BCA=PAQ=90,以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有ACBQAP和ACBPAQ两种情况,当ACBQAP,;当ACBPAQ,故答案为:6cm或12cm【点睛】本题主要考查了全等三角形的性质,熟知

16、全等三角形的性质是解题的关键3、40【分析】根据已知得出B=2A,C=A+20,代入A+B+C=180得出方程A+2A+A+20=180,求出即可【详解】解:B是A的2倍,C比A大20,B=2A,C=A+20,A+B+C=180,A+2A+A+20=180,A=40,故答案为:40【点睛】本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180,用了方程思想4、59【分析】先利用三角形内角和定理求出CAB+CBA=180-C=118,从而利用三角形外角的性质求出DAB+EBA=2C+CAB+CBA=242,再由角平分线的定义求出,由此求解即可【详解】解:C=62,CAB+CBA=180

17、-C=118,DAB=C+CBA,EBA=C+CAB,DAB+EBA=2C+CAB+CBA=242,ABC两个外角的角平分线相交于G,G=180-GAB-GBA=59,故答案为:59【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键5、20【分析】根据所给的角的度数,容易证得是等腰三角形,而的长易求,所以根据等腰三角形的性质,的值也可以求出【详解】解:据题意得,(海里)故答案是:20【点睛】本题考查了等腰三角形的性质及方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法三、解答题

18、1、证明过程见解析【分析】先证明,得到,再证明,即可得解;【详解】由题可得,在和中,又,在和中,【点睛】本题主要考查了全等三角形的判定与性质,准确分析证明是解题的关键2、()见解析;()【分析】()由CD是的平分线得出,由得出从而得出,由平行线的判断即可得证;()由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案【详解】()CD是的平分线,;(),【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键3、(1)证明见解析;(2)补全图形见解析;是等边三角形,证明见解析【分析】(1)由等边三角形的性质可知,结合题意易得出即可利用“SAS”证明,即得出;(2)根

19、据题意补全图形即可;由全等三角形的性质可知,再由题意点M,N分别是AE,BF的中点,即得出即可利用“SAS”证明,得出结论,最后根据,即得出,即可判定是等边三角形(1)与都是等边三角形,即,在和中,(2)画图如下:是等边三角形理由如下:,点M,N分别是AE,BF的中点,在和中,即,是等边三角形【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点利用数形结合的思想是解答本题的关键4、(1)40;(2)10;(3)ABCF,理由见解析【分析】(1)根据三角形的角和定理和角平分线的定义可求得BAC+ACB=140即可求解;(2)根据三角形的外角性质求得B+BAE=47即可求解;

20、(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到FCG=2F,再根据角平分线的定义和等角的余角相等得到BCF=2F,则有B=BCF,根据平行线在判定即可得出结论【详解】解:(1)ADC=110,DAC+DCA=180110=70,AE平分BAC,CD平分ACB,BAC=2DAC,ACB=2DCA,BAC+ACB=2(DAC+DCA)=140,B=180(BAC+ACB)=180140=40,故答案为:40;(2)ADC=DCE+DEC=100,DCE=53,DEC=10053=47,B+BAE=DEC=47,BBAE=27,BAE=10,故答案为:10;(3)ABCF,理由为:如

21、图,延长AC到G,AC=CF,F=FAC,FCG=F+FAC=2F,CFCD,BCF+BCD=90,FCG+ACD=90,CD平分ACB,BCD=ACD,BCF=FCG=2F,B=2F,B=BCF,ABCF【点睛】本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键5、(1)见解析;(2)AEF、ADG、DCF、ECD【分析】(1)根据已知条件得到BAECAD,根据全等三角形的性质得到AEDABC,根据等腰三角形的性质得到ABCAEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论【详解

22、】证明:(1)如图1,BAECAD, BAECAECADCAE,即BACEAD,在AED与ABC中,AEDABC,AEDABC,BAEABCAEB180,CEDAEDAEB180,ABAE,ABCAEB,BAE2AEB180,CED2AEB180,DECBAE;(2)解:如图2, BAECAD30,ABCAEBACDADC75,由(1)得:AEDABC75,DECBAE30,ADAB,BAD90,CAE30,AFE180307575,AEFAFE, AEF是等腰三角形, BEGDEC30,ABC75,G45,在RtAGD中,ADG45,ADG是等腰直角三角形, CDF754530,DCFDFC

23、75,DCF是等腰直角三角形;CEDEDC30,ECD是等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键6、6cm【分析】先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.【详解】解:是边上的中线,是的中点,=.【点睛】本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键.7、成立,证明见解析【分析】根据阅读材料将ADF旋转120再证全等即可求得EF= BE+DF 【详解】解:成立证明:将绕点顺时针旋转,得到,、三点共线,【点睛】本题考查旋

24、转中的三角形全等,读懂材料并运用所学的全等知识是本题关键8、不合格,理由见解析【分析】延长BD与AC相交于点E利用三角形的外角性质,可得,即可求解【详解】解:如图,延长BD与AC相交于点E是的一个外角,同理可得李师傅量得,不是115,这个零件不合格【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键9、(1)见解析;(2)见解析【分析】(1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;(2)利用角平分线性质可得,由此证明,得到,继而

25、证明,证得即可解题【详解】解:(1)如图,点F、G即为所求作的点;(2)是的角平分线,【点睛】本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键10、(1)见解析;(2)等于120的角有BFC、BDE、DFE=120【分析】(1)利用SAS证明ADCBEC,即可证明AD=BE;(2)证明CDE为等边三角形,可求得BDE=120;利用全等三角形的性质可求得BFD=BCA=60,推出DFE=120;同理可推出BFC=AFC+BFD=120【详解】(1)证明:等边ABC中,CA=CB,ACB=60,CE=CD,BCE=60,ADCBEC(SAS),AD=BE;(2)等于120的角有BFC、BDE、DFE=120CE=CD,BCE=60,CDE为等边三角形,CDE=60,BDE=120;ADCBEC,DAC=EBC,又BDF=ADC,BFD=BCA=60,DFE=120;同理可求得AFC=ABC=60,BFC=AFC+BFD=120;综上,等于120的角有BFC、BDE、DFE=120【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁