《精品试卷北师大版八年级数学下册第三章图形的平移与旋转定向练习练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《精品试卷北师大版八年级数学下册第三章图形的平移与旋转定向练习练习题(名师精选).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是()AB C D2、如图在平面直角坐标系中,点N与点F关于原点O对
2、称,点F的坐标是(3,2),则点N的坐标是( )A(3,2)B(3,2)C(2,3)D(2,3)3、如图,把含30的直角三角板ABC绕点B顺时针旋转至如图EBD,使BC在BE上,延长AC交DE于F,若AF8,则AB的长为()A4B4C4D64、下列图形中不是中心对称图形的是( )ABCD5、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD6、下列产品logo图片中,既是轴对称图形又是中心对称图形的是( )ABCD7、ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到ABC,则点P的坐标是()A(4,5)B(4,4)C(3,5)D(3,4)8、下列图形中,是中心对称图形的
3、是()ABCD9、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )ABCD10、下列图形既是轴对称图形又是中心对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,ACB90,BAC30,BC6,将ABC绕点C顺时针旋转30得到ABC,A、B分别与A、B对应,CA交AB于点M,则CM的长为 _2、在平面直角坐标系中,与点关于原点对称的点的坐标是_3、在平面直角坐标系内,点A(a,3)与点B(1,b)关于原点对称,则a+b的值_4、在平面直角坐标系中,与点(2,-7)关于y轴对称的点的坐标为_5、如图,在ABC中,
4、ACB=90,A=30,AB=10如果将ABC绕点C按逆时针旋转到ABC的位置,并且点B恰好落在边AB上,则BB的长为_ 三、解答题(5小题,每小题10分,共计50分)1、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积2、如图,已知ABC是等边三角形,在ABC外有一点D,连接AD,BD,CD,将ACD绕点A按顺时针方向旋转得到ABE,AD与BE交于点F,BFD97(1)求ADC的大小;(2)若BDC7,BD2,BE4,求AD的长3、如图,在RtABC中,ACB90,CACB,点D、E在线段AB上(1)如图1,若CDCE,求证:ADBE;(2)如图2,若DCE45,求证:DE2A
5、D2+BE2;(3)如图3,若点P是ABC内任意一点,BPC135,设APa、BPb、CPc,请直接写出a,b,c之间的数量关系4、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为、(1)画出将关于点对称的图形;(2)写出点、的坐标5、如图,将两个完全相同的三角形纸片ABC与DEC重合放置,其中C90,BE30,如图,固定ABC,使DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,求证DEAC-参考答案-一、单选题1、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对
6、称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D既不是轴对称图形,也不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、A【分析】根据点F点N关于原点对称,即可求解【详解】解:F点与N点关于原点对称,点F的坐标是(3,2),N
7、点坐标为(3,2)故选:A【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键3、C【分析】根据旋转的性质得到ABBE,AE30,设BCx,根据直角三角形的性质得到ABDE2x,根据勾股定理得到AC,根据题意列方程即可得到结论【详解】解:把含30的直角三角板ABC绕点B顺时针旋转得到EBD,ABBE,AE30,ACB90,EDF90,设BCx,ABBE2x,CEx,AC,ECF90,E30,CFEF,CEx,CF,AF8,xAB2x,故选:C【点睛】本题考查了旋转的性质,含30角的直角三角形的性质,勾股定理,熟练掌握旋转的性质是解题的关
8、键4、B【分析】根据中心对称图形的概念求解【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意故选:B【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形5、D【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项不符合题意;C是轴对称图形,不是中心对称图形,故本选项符合题意;D既是轴对称图形,又是中心对称图形,故本选项不符合题意故选:D【点睛】本
9、题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合6、C【分析】根据轴对称图形、中心对称图形的定义解题【详解】解:A.是轴对称图形,不是中心对称图形,故A不符合题意;B.是中心对称图形,不是轴对称图形,故B不符合题意;C. 既是轴对称图形又是中心对称图形,故C符合题意;D. 是轴对称图形,不是中心对称图形,故D不符合题意,
10、故选:C【点睛】本题考查轴对称图形与中心对称图形的识别,轴对称图形的关键是找对称轴,图形两部分沿着对称轴折叠可重合;中心对称图形是要寻找对称中心,旋转180后能与原图重合7、B【分析】对应点的连线段的垂直平分线的交点,即为所求【详解】解:如图,点即为所求,故选:B【点睛】本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心8、D【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;
11、D、是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键9、C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1)故选:C【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加10、C【详解】解:A不是轴对称图形,不是中心对称图形,故本选项不符合题意;B是轴对称图形,不是中心对称图形,故本选项
12、不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D不是轴对称图形,不是中心对称图形,故本选项不符合题意故选:C【点睛】本题主要考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形二、填空题1、【分析】根据旋转的性质可得,所以,由题意可得:,为等边三角形,即可求解【详解】解:,由旋转的性质可得,为等边三角形,故答案为:【点睛】此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的
13、关键是灵活掌握相关基本性质进行求解2、(-3,-1)【分析】由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.【详解】解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).故答案为:(-3,-1).【点睛】本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数3、2【分析】根据点关于原点对称的坐标特点即可完成【详解】点A(a,3)与点B(1,b)关于原点对称 故答案为:2【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相
14、反数,求代数式的值;掌握这个特征是关键4、(-2,-7)【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可【详解】解:点(2,-7)关于y轴对称的点的坐标是(-2,-7)故答案为:(-2,-7)【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数5、5【分析】先根据含30度的直角三角形三边的关系得BCAB5,在根据旋转的性质得CBCB,CBACBA60,则可判断BBC为等边三角形,然后根据等边三角形的性质求解【详解】解:A
15、CB90,A30,AB10,BCAB5,ABC60,三角板ABC绕点C逆时针旋转,点B恰好落在边AB上,CBCB,CBACBA60,BBC为等边三角形,BBBC5故答案为:5【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角也考查了等边三角形的判定与性质、含30度的直角三角形三边的关系三、解答题1、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可【详解】解:的顶点坐标分别为,绕点顺时针旋转,得到,点A1横坐标-1+5-(-1)=5,纵坐标-1
16、+-1-(-4)=2,A1(5,2),点B1横坐标-1+2-(-1)=2,纵坐标-1+-1-(-5)=3,B1(2,3),点C1横坐标-1+4-(-1)=4,纵坐标-1+-1-(-3)=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1, B1C1,C1A1,则A1B1C1为所求;,=,=,=2【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键2、(1)23;(2)【分析】(1)由旋转的性质可得ABAC,ADCE,CABDAE60,由三角形的内角和定理可求解;(2)连接DE,可证A
17、ED是等边三角形,可得ADE60,ADDE,由旋转的性质可得ACDABE,可得CDBE4,由勾股定理可求解【详解】解:(1)将ACD绕点A按顺时针方向旋转得到ABE,ABAC,ADCE,CABDAE60,BFD97AFE,E180976023,ADCE23;(2)如图,连接DE,ADAE,DAE60,AED是等边三角形,ADE60,ADDE,将ACD绕点A按顺时针方向旋转得到ABE,ACDABE,CDBE4,BDC7,ADC23,ADE60,BDE90,DE,ADDE【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键
18、3、(1)见解析;(2)见解析;(3),见解析【分析】(1)由CACB得AB,由CDCE得CEACDB,则ACEBCD,得AEBD,即可转化为ADBE;(2)将ACD绕点C沿逆时针方向旋转90得到BCF,联结EF,则BFAD,证明FCEDCE,得FEDE,再证明EBF90,则FE2BF2+BE2,即可证得DE2AD2+BE2;(3)将CAP绕点C沿逆时针方向旋转90得到CBG,联结PG,则BGAP,GCPC,PCG90,所以PG2PC2+GC22PC2,再证明BPG90,则BG2BP2+PG2,可证得AP2BP2+2PC2,即a2b2+2c2【详解】解:(1)证明:如图1,CACB,AB,CD
19、CE,CEACDB,ACEBCD(AAS),AEBD,AEDEBDDE,ADBE(2)证明:如图2,将ACD绕点C沿逆时针方向旋转90得到BCF,联结EF,ACB90,CACB,CBAA45,由旋转得CFCD,BCFACD,DCE45,FCEBCF+BCEACD+BCE904545,FCEDCE,CECE,FCEDCE(SAS),FEDE,CBFACBA45,EBF90,FE2BF2+BE2,BFAD,DE2AD2+BE2(3)a2b2+2c2,理由如下:如图3,将CAP绕点C沿逆时针方向旋转90得到CBG,联结PG,由旋转得GCPC,PCG90,CPGCGP45,PG2PC2+GC22PC2
20、,BPC135,BPG1354590,BG2BP2+PG2,BGAP,AP2BP2+2PC2,a2b2+2c2【点睛】此题考查等腰三角形的性质、等腰直角三角形的性质、全等三角形的判定与性质、旋转的性质、勾股定理等知识,根据旋转的性质作辅助线是解题的关键4、(1)见解析;(2),【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可【详解】解:(1)如图所示,(2),【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键5、见解析【分析】先根据直角三角形两锐角互余求出A=60,再由由旋转的性质可得,CD=CA,EDC=A=60,即可证明ACD=60,推出ACD=EDC=60,则DEAC【详解】解:ACB90,BE30,A=60,由旋转的性质可得,CD=CA,EDC=A=60,ACD是等边三角形,ACD=60,ACD=EDC=60,DEAC【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,直角三角形两锐角互余,平行线的判定,推出ACD是等边三角形是解题的关键