《北师大版七年级数学下册第六章概率初步重点解析试题(名师精选).docx》由会员分享,可在线阅读,更多相关《北师大版七年级数学下册第六章概率初步重点解析试题(名师精选).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第六章概率初步重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件中是必然事件的是( )A小菊上学一定乘坐公共汽车B某种彩票中奖率为1,买10000张该种票一定会中奖C一
2、年中,大、小月份数刚好一样多D将豆油滴入水中,豆油会浮在水面上2、掷一个骰子时,点数小于2的概率是( )ABCD03、已知粉笔盒里有8支红色粉笔和n支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n的值是( )A10B12C13D144、下列事件中,是必然事件的是( )A同位角相等B打开电视,正在播出特别节目战疫情C经过红绿灯路口,遇到绿灯D长度为4,6,9的三条线段可以围成一个三角形5、某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是()A从标有1,2,3,4,5,6 的六张卡片中任抽一张,出现偶数B从一个装
3、有6个红球和3个黑球的袋子中任取一球,取到的是黑球C一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃D掷一个质地均匀的正六面体骰子,向上的面点数是46、在一个不透明的纸箱中,共有个蓝色、红色的玻璃球,它们除颜色外其他完全相同小柯每次摸出一个球后放回,通过多次摸球试验后发现摸到蓝色球的频率稳定在,则纸箱中红色球很可能有( )A个B个C个D个7、一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同搅匀后任意摸出一个球,是白球的概率为( )ABCD8、袋中有白球3个,红球若干个,他们只有颜色上的区别从袋中随机取出一个球,如果取到白球的可能性更大,那么袋中红球的个数可能是( )A
4、2个B3个C4个D4个或4个以上9、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是( )ABCD10、乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )A甲获胜的可能性比乙大B乙获胜的可能性比甲大C甲、乙获胜的可能性一样大D无法判断第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,转盘中有6个面积都相等的扇形,任意转动转盘1次,当转盘停止转动时,“指针所落扇形中的数为偶数”发生的概率为_2、在桌面上放有四张背面完全一样的卡片,卡片的正面分别标有数字4、2、1、3,
5、把四张卡片背面朝上,随机抽取两张,则两张卡片上的数字之和为正数的概率是_3、一个盒子里装有除颜色外都相同的1个红球,4个黄球把下列事件的序号填入下表的对应栏目中从盒子中随机摸出1个球,摸出的是黄球;从盒子中随机摸出1个球,摸出的是白球;从盒子中随机摸出2个球,至少有1个是黄球事件必然事件不可能事件随机事件序号_4、一枚质地均匀的骰子的六个面上分别刻有16的点数,抛掷这枚骰子,若抛到偶数的概率记作,抛到奇数的概率记作,则与的大小关系是_5、一般地,当试验的可能结果有很多且各种可能结果发生的可能性相等时,则用列举法,利用概率公式_的方式得出概率当试验的所有可能结果不是有限个,或各种可能结果发生的可
6、能性不相等时,常常是通过_来估计概率,即在同样条件下,大量重复试验所得到的随机事件发生的频率的稳定值来估计这个事件发生的_三、解答题(5小题,每小题10分,共计50分)1、节假日期间,某超市开展有奖促销,凡在超市购物的顾客均有转动转盘的机会(如图,转盘被分为8个扇形),规定当转盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中三等奖;指向其余数字不中奖(1)转动转盘中一等奖、二等奖、三等奖的概率分别是多少?(2)顾客中奖的概率是多少?2、口袋里有14个球,除颜色外都相同,其中1个红球、4个黄球、9个绿球从口袋里随意摸出1个球,将摸到红球、黄球、不是红球,不是黄球的可能性按
7、从小到大的顺序排列3、拋掷一枚质地均匀的硬币,向上一面有几种可能的结果?它们的可能性相等吗?由此能得到“正面向上”的概率吗?4、一个密码锁的密码由四个数字组成,每个数字都是09这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开粗心的小明忘了中间的两个数字,他一次就能打开该锁的概率是多少?5、为庆祝党的百年华诞,我校即将举办“学党史颂党思”的主题活动学校拟定了A党史知识比赛;B视频征集比赛;C歌曲合唱比赛;D诗歌创作比赛四种活动方案,为了解学生对活动方案的喜爱情况,学校随机抽取了名学生进行调查(每人必选且只能选择一种方案),将调查结果绘制成如下两幅不完整的统计图根据以上信息,解
8、答下列问题(1)在扇形统计图中,的值是 ;并将条形统计图补充完整;(2)根据本次调查结果,估计全校名学生中选择方案的学生大约有多少人?(3)若从被调查的学生中任意采访一名学生甲,发现他选择的是方案C,那么再采访另一名学生乙时,他的选择也是方案C的概率是多少?-参考答案-一、单选题1、D【分析】必然事件就是一定发生的事件,根据定义即可解答【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度水的密度,所以油一定浮在水面上,是必然事
9、件,符合题意故选:D【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、A【分析】让骰子里小于2的数的个数除以数的总数即为所求的概率【详解】解:掷一枚均匀的骰子时,有6种情况,即1、2、3、4、5、6,出现小于2的点即1点的只有一种,故其概率是故选:A【点睛】本题考查了概率公式的应用,解题的关键是注意概率所求情况数与总情况数之比3、B【分析】根据概率求解公式列方程计算即可;【详解】由题意得:,解得:n12经检验:n12是方程的解故选B【点睛】本题主要考查了概率公式的应用,准确
10、计算是解题的关键4、D【分析】根据必然事件的概念即可得出答案【详解】解:同位角不一定相等,为随机事件,A选项不合题意,打开电视,不一定正在播出特别节目战疫情,为随机事件,B选项不合题意,车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件, C选项不合题意,4+69,长度为4,6,9的三条线段可以围成一个三角形为必然事件,D选项符合题意,故选:D【点睛】本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念5、B【分析】由图象可知,该实验的概率趋近于0.3-0.4之间,依次判断选项所对应实验的概率即可【详解】A.从标有1,2,3,4,5,6 的六张卡片中
11、任抽一张,出现偶数,概率为,选项与题意不符,故错误B.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球,概率为,选项与题意符合,故正确C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃,选项与题意不符,故错误D.掷一个质地均匀的正六面体骰子,向上的面点数是4,概率为,选项与题意不符,故错误故选:B【点睛】本题考察了用频率估计概率,当实验次数足够多时,出现结果的频率可以看作是该结果出现的概率,本题通过图象可以估计出概率的范围,再依次判断各选项即可6、D【分析】根据利用频率估计概率得到摸到蓝色球的概率为20%,由此得到摸到红色球的概率=1-20%=80%,然后用80%乘以总
12、球数即可得到红色球的个数【详解】解:摸到蓝色球的频率稳定在20%,摸到红色球的概率=1-20%=80%,不透明的布袋中,有黄色、白色的玻璃球共有15个,纸箱中红球的个数有1580%=12(个)故选:D【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率7、A【分析】让白球的个数除以球的总数即为摸到白球的概率【详解】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是故选:A【点睛】本题考查了概率公式的简单应用,熟知
13、概率=所求情况数与总情况数之比是解题的关键8、A【分析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解【详解】解:袋中有白球3个,取到白球的可能性较大,袋中的白球数量大于红球数量,即袋中红球的个数可能是2个或2个以下故选:A【点睛】本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等9、A【分析】如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 利用概率公式直接计算即可得到答案【详解】解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,骰子
14、落地时朝上的数为偶数的可能性有种,而所有的等可能的结果数有种,所以骰子落地时朝上的数为偶数的概率是 故选A【点睛】本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.10、A【分析】根据事件发生的可能性即可判断【详解】甲已经得了8分,乙只得了2分,甲、乙两人水平相当甲获胜的可能性比乙大故选A【点睛】此题主要考查事件发生的可能性,解题的关键是根据题意进行判断二、填空题1、【分析】直接利用概率公式求解即可【详解】解:根据题意可得:指针指向的可能情况有6种,而其中是偶数的有4种,“指针所落扇形中的数为偶数”发生的概率为,故答案为:【点睛】本题考查了概率公式:随机事件的概率(A)事件可能出现的结
15、果数除以所有可能出现的结果数2、【分析】画树状图得出共有12种等可能的结果数,其中两张卡片上的数字之和为正数的结果有10种,再由概率公式求解即可【详解】解:根据题意画图如下:共有12种等可能的结果,其中两张卡片上的数字之和为正数的结果有10种,则两张卡片上的数字之和为正数的概率是故答案为:【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比3、 【分析】直接利用必然事件:一定发生的事件;不可能事件:一定不会发生的事件;随机事件:可能发生可
16、能不发生的事件,来依次判断即可【详解】解:根据盒子里装有除颜色外都相同的1个红球,4个黄球,从盒子中随机摸出1个球,摸出的是黄球,属于随机事件;从盒子中随机摸出1个球,摸出的是白球,属于不可能事件;从盒子中随机摸出2个球,至少有1个是黄球,属于必然事件;故答案是:,【点睛】本题考查了必然事件、不可能事件、随机事件,解题的关键是掌握相应的概念进行判断4、【分析】直接利用概率公式求出P1,P2的值,进而得出答案【详解】解:由题意可得出:一枚质地均匀的骰子的六个面上分别刻有16的点数,偶数有2、4、6共3个,奇数有1、3、5共3个,抛到偶数的概率为P1=;抛到奇数的概率为P2=,故P1与P2的大小关
17、系是:P1=P2故答案为:P1=P2【点睛】本题主要考查了概率公式的应用,熟练利用概率公式求出是解题关键如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=5、P(A) 统计频率 概率 【详解】略三、解答题1、(1),;(2)【分析】(1)分别求出数字8,2和6,1和3和5所占的份数即可求出转动转盘中一等奖、二等奖、三等奖的概率;(2)求出8,2,6,1,3,5份数之和即可得到顾客中奖的概率【详解】解:(1)由题意可知:,;(2)8,2,6,1,3,5份数之和为6,转动圆盘中奖的概率为:【点睛】此题考查概率的求法:如果一个事件有种可能,而且这些事
18、件的可能性相同,其中事件出现种结果,那么事件的概率(A)2、摸到的球是红球的可能性摸到的球是黄球的可能性摸到的球不是黄球的可能性摸到的球不是红球的可能性【分析】根据题意可得:红球个数是1,黄球的个数是4,不是红球的个数是13,不是黄球的个数是10,即可求解【详解】解:因为袋子中,总球数固定,红球个数是1,黄球的个数是4,不是红球的个数是13,不是黄球的个数是10,所以摸到的球是红球的可能性摸到的球是黄球的可能性摸到的球不是黄球的可能性摸到的球不是红球的可能性【点睛】本题主要考查了判断事件发生的可能性大小,理解在一个固定数量物品的整体中,判断事件发生的可能性大小时,某种物品的数量越多,则摸到或选
19、中该种物品的可能性就越大,即可能性大小主要看这个事件中出现这个结果的机会的大小是解题的关键3、可能性相等,“正面向上”的概率为【分析】抛一枚质地均匀的硬币,有两种结果:正面朝上或者反面朝上,每种结果等可能出现即可所求【详解】解:抛掷一枚质地均匀的硬币的实验有两种可能的结果,它们的可能性相等,“正面向上”的概率为【点睛】本题主要考查了等可能事件和其概率,解题的关键在于能够熟练掌握相关知识进行求解4、【分析】计算出数字的总共组合有几种,其中只有一种能打开,利用概率公式进行求解即可【详解】因为密码由四个数字组成,如个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是09中的一个
20、,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是09中的一个,也要试10次,依此类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键,如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件A的概率5、(1)30%,统计图见解析;(2)200人;(3)【分析】(1)根据扇形统计图可得方案的学生所占百分比,乘以总人数数可得方案人数,进而根据条形统计图可得方案学生的人数,即可求得的值,据此补全统计图即可;(2)根据方案所占样本的百分比乘以2000即可求得全校选择方案的学生大约有多少人;(3)根据选择方案的人数除以总人数可得每一个人选择方案的概率,即可求得乙选择方案的概率【详解】(1)由扇形统计图得方案的学生所占百分比为,总人数为200,方案人数(人),则方案学生的人数为(人),补全统计图如图,故答案为30,补充图如上.(2)选择方案的学生有20人,占总人数的,全校名学生中选择方案的学生大约有人;(3)每一个人选择方案的概率为,则乙选择也是方案C的概率为【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,概率的计算,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小