《精品试题沪科版九年级数学下册第24章圆必考点解析试题(名师精选).docx》由会员分享,可在线阅读,更多相关《精品试题沪科版九年级数学下册第24章圆必考点解析试题(名师精选).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD2、如图,点P是等边
2、三角形ABC内一点,且PA3,PB4,PC5,则APB的度数是( )A90B100C120D1503、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m4、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD5、如图
3、是一个含有3个正方形的相框,其中BCDDEF90,AB2,CD3,EF5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )ABCD6、下面的图形中既是轴对称图形又是中心对称图形的是( )ABCD7、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20B25C30D408、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )A2个B3个C4个D5个9、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD10、如图图案中,不是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5
4、小题,每小题4分,共计20分)1、如图,点D为边长是的等边ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持ADB120不变,则四边形ADBC的面积S的最大值是 _2、已知如图,AB=8,AC=4,BAC=60,BC所在圆的圆心是点O,BOC=60,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为_3、如图,半圆O中,直径AB30,弦CDAB,长为6,则由与AC,AD围成的阴影部分面积为_4、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为若,则的大小为_(度)5、如图,已知扇形的圆心角为60,半径为2,则图中弓形(阴影部分)的面积为_三、解答题(5小
5、题,每小题10分,共计50分)1、如图,AB是O的直径,点C是O上一点,连接BC,半径OD弦BC(1)求证:弧AD=弧CD;(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若O的半径为5,BC=6,求CD和EF的长2、综合与实践“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的人们根据实际需要,发明了一种简易操作工具三分角器图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了为了
6、说明这一方法的正确性,需要对其进行证明独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整已知:如图2,点,在同一直线上,垂足为点,_,切半圆于求证:_探究解决:(2)请完成证明过程应用实践:(3)若半圆的直径为,求的长度3、如图,已知弓形的长,弓高,(,并经过圆心O)(1)请利用尺规作图的方法找到圆心O;(2)求弓形所在的半径的长4、如图,在ABC中,ACB=90,AC=BC,D是AB边上一点(与A、B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连接DE、BE(1)求证:ACDBCE;(2)若BE=5,DE=13,求AB的长5、如图,AB是的直径,CD是
7、的一条弦,且于点E(1)求证:;(2)若,求的半径-参考答案-一、单选题1、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90-B=60,OCD=OCA=30,在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC=360
8、-OAC-ACD-ODC=360-90-90-60=120,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键2、D【分析】将绕点逆时针旋转得,根据旋转的性质得,则为等边三角形,得到,在中,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数【详解】解:为等边三角形,可将绕点逆时针旋转得,如图,连接,为等边三角形,在中,为直角三角形,且,故选:D【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点
9、与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等3、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键4、B【详解】解:A是轴对称图形,不是中心对称图形,
10、故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合5、A【分析】如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长
11、交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 设 而AB2,CD3,EF5,结合正方形的性质可得:而 又 而 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.6、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;
12、C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键7、B【分析】连接OA,如图,根据切线的性质得PAO=90,再利用互余计算出AOP=50,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90,P
13、=40,AOP=50,OA=OB,B=OAB,AOP=B+OAB,B=AOP=50=25故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系8、A【分析】根据轴对称图形与中心对称图形的概念进行判断【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形故选:A【点睛】此题主要考查了中心对称图形与轴对称图形的概念(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴(2)如
14、果一个图形绕某一点旋转180后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心9、B【分析】根据“把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,
15、熟练掌握中心对称图形及轴对称图形的定义是解题的关键10、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念中心对称图形是要寻找对称中心,旋转180后重合二、填空题1、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的
16、最大值,分别求出两个三角形的面积,相加即可【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持ADB120不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点作的垂线交于点,如图:,在中,解得:,过点作的垂线交于,故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质2、12【分析】如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题【详解】解:如图,连接BC,
17、AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,当MN的值最小时,PEF的值最小,AP=AM=AN,BAM=BAP,CAP=CAN,BAC=60,MAN=120,MN=AM=PA,当PA的值最小时,MN的值最小,取AB的中点J,连接CJAB=8,AC=4,AJ=JB=AC=4,JAC=60,JAC是等边三角形,JC=JA=JB,ACB=90,BC=,BOC=60,OB=OC,OBC是等边三角形,OB=OC=BC=4,BCO=60,ACH=30,AHOH,AH=AC=2,CH=AH=2,OH=6
18、,OA=4,当点P在直线OA上时,PA的值最小,最小值为-,MN的最小值为(-)=-12故答案:-12【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题3、45【分析】连接OC,OD,根据同底等高可知SACD=SOCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解【详解】解:连接OC,OD,直径AB=30,OC=OD=,CDAB,SACD=SOCD,长为6,阴影部分的面积为S阴影=S扇形OCD=,故答案为:45【点睛】本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题
19、的关键4、20【分析】先利用旋转的性质得到ADC=D=90,DAD=,再利用四边形内角和计算出BAD=70,然后利用互余计算出DAD,从而得到的值【详解】矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,ADC=D=90,DAD=,ABC=90,BAD=180-1=180-110=70,DAD=90-70=20,即=20故答案为20【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等5、【分析】根据弓形的面积=扇形的面积-三角形的面积求解即可【详解】解:如图,ACOB,圆心角为60,OA=OB,OAB是等边三角形,OC=OB=
20、1,AC=,SOAB=OBAC=2=,S扇形OAB=,弓形(阴影部分)的面积= S扇形OAB- SOAB=,故答案为:【点睛】本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键三、解答题1、(1)见解析;(2)CD=,EF=1【分析】(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证(2)根据直径所对的圆周角是直角求出ACB=90,根据平行线的性质求得AEO=ACB=90,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=
21、4,根据中位线定理求出OE,在RtCDE中,根据勾股定理求出CD,因为,所以EDFBCF,最后根据似的性质,列方程求解即可【详解】(1)解:连结OC1=B2=COB =OCB=C1=2弧AD=弧CD(2)AB是的直径ACB=90AEO=ACB=90RtABC中,ACB=90,BC=6,AB=10 AC=8半径ODAC于E EC=AE=4 OE=ED=2 由勾股定理得,CD=EDFCBF设EF=x,则FC=4-xEF=1,经检验符合题意.【点睛】本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形
22、中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键2、(1),将三等分;(2)见解析;(3)【分析】(1)根据题意即可得;(2)先证明与全等,然后根据全等的性质可得,再由圆的切线的性质可得,可得三个角相等,即可证明结论;(3)连,延长与相交于点,由(2)结论可得,再由切线的性质,然后利用勾股定理及线段间的数量关系可得,最后利用相似三角形的判定和性质求解即可得【详解】解:(1),将三等分,故答案为:;,将三等分,(2)证明:在与中,是的切线、都是的切线,将三等分(3)如图,连,延长与相交于点,由(2),知是的切线,半径,由勾股定理得,在中,即,【点睛】题目主要考查全等三角
23、形的判定和性质,相似三角形的判定和性质,圆的切线的性质,勾股定理等,理解题意,结合图形综合运用这些知识点是解题关键3、(1)见解析(2)10【分析】(1)作BC的垂直平分线,与直线CD的交点即为圆心;(2)连接OA,根据勾股定理列出方程即可求解(1)解:如图所示,点O即是圆心;(2)解:连接OA,并经过圆心O,解得,答:半径为10【点睛】本题考查了垂径定理和确定圆心,解题关键是熟练作图确定圆心,利用垂径定理和勾股定理求半径4、(1)见解析;(2)17【分析】(1)由旋转的性质可得CDCE,DCE90ACB,由“SAS”可证ACDBCE;(2)由ACB90,ACBC,可得CABCBA45,再由A
24、CDBCE,得到BEAD=5,CBECAD45,则ABEABC+CBE90,然后利用勾股定理求出BD的长即可得到答案【详解】解:(1)证明:将线段CD绕点C按逆时针方向旋转90得到线段CE,CDCE,DCE90ACB,ACD+BCD=BCE+BCD,即ACDBCE,在ACD和BCE中,ACDBCE(SAS);(2)ACB90,ACBC,CABCBA45,ACDBCE,BEAD=5,CBECAD45,ABEABC+CBE90,AB=AD+BD=17【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键5、(1)见解析;(2)3【分析】(1)根据D=B,BCO=B,代换证明;(2)根据垂径定理,得CE=,利用勾股定理计算即可【详解】(1)证明:OCOB,BCOB;,BD;BCOD;(2)解:AB是O的直径,且CDAB于点E,CECD,CD,CE,在RtOCE中,OE1,;O的半径为3【点睛】本题考查了圆周角定理,垂径定理,勾股定理,结合图形,熟练运用三个定理是解题的关键