精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解同步练习试题(含答案及详细解析).docx

上传人:知****量 文档编号:28196911 上传时间:2022-07-26 格式:DOCX 页数:19 大小:227.73KB
返回 下载 相关 举报
精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解同步练习试题(含答案及详细解析).docx_第1页
第1页 / 共19页
精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解同步练习试题(含答案及详细解析).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解同步练习试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解同步练习试题(含答案及详细解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第四章因式分解同步练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C. a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)22、下列因式分解正确的是( )A.3ab26ab3a(b22b)B.x(ab)y(ba)(ab)(xy)C.a2+2ab4b2(a2b)2D.a2+a(2a1)23、下列各选项中因式分解正确的是( )A

2、.x21(x1)2B.a32a2aa2(a2)C.2y24y2y(y2)D.a2b2abbb(a1)24、下列多项式中,能用平方差公式进行因式分解的是( )A.B.C.D.5、多项式的因式为( )A.B.C.D.以上都是6、已知的值为5,那么代数式的值是( )A.2030B.2020C.2010D.20007、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主8、下列因式分解正确的是( )A.B.C.D.9、下列等式从左到右的变形,属于因式分解的是(

3、)A.a2b2(ab)(ab)B.a(xy)axayC.x22x1x(x2)1D.(x1)(x3)x24x310、下列因式分解结果正确的是( )A.B.C.D.11、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)12、下列各式中不能用平方差公式分解的是( )A.B.C.D.13、下列多项式因式分解正确的是( )A.B.C.D.14、下列等式从左到右的变形,属于因式分解的是()A.x2+2x1(x1)2B.(a+b)(ab)a2b2C.x2+4x+4(x+2)2D.ax2aa(x21)15、把多项式x39x分解因式,正确的

4、结果是( )A.x(x29)B.x(x3)(x3)C.x(x3)2D.x(3x)(3x)二、填空题(10小题,每小题4分,共计40分)1、若关于的二次三项式可以用完全平方公式进行因式分解,则_2、因式分解:_3、因式分解: _4、多项式的公因式是_5、因式分解:_6、若多项式可分解因式,则_,_7、若mn3,mn7,则m2nmn2_8、因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),王勇看错了b的值,分解的结果是(x+2)(x3),那么x2+ax+b因式分解正确的结果是_9、若,则的值是_10、分解因式:_三、解答题(3小题,每小题5分,共计15分)1、探究:如何把

5、多项式x2+8x+15因式分解? (1)观察:上式能否可直接利用完全平方公式进行因式分解? 答:_; (2)(阅读与理解):由多项式乘法,我们知道(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左地使用,即可对形如x2+(a+b)x+ab的多项式进行因式分解,即:x2+(a+b)x+ab=(x+a)(x+b)此类多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和猜想并填空:x2+8x+15=x2+(_)+(_)x+(_)(_)=(x+_)(x+_)(3)上面多项式x2+8x+15的因式分解是否符合题意,我们需要验证请写出验证过程(4)请运

6、用上述方法将下列多项式进行因式分解:x2-x-122、因式分解:(1) (2)3、已知实数,满足,求的值-参考答案-一、单选题1、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解

7、题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.2、D【分析】根据因式分解的定义及方法即可得出答案.【详解】A:根据因式分解的定义,每个因式要分解彻底,由3ab26ab3a(b22b)中因式b22b分解不彻底,故A不符合题意.B:将x(ab)y(ba)变形为x(ab)+y(ab),再提取公因式,得x(ab)y(ba)x(ab)+y(ab)(ab)(x+y),故B不符合题意.C:形如a22ab+b2是完全平方式,a2+2ab4b2不是完全平方式,也没有公因式,不可进行因式分解,故C不符合题意.D:先将变形为,再运用公

8、式法进行分解,得,故D符合题意.故答案选择D.【点睛】本题考查的是因式分解,注意因式分解的定义把一个多项式拆解成几个单项式乘积的形式.3、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A、,选项错误;B、,选项错误;C、 ,选项错误;D、,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.4、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、a22abb2是三项,不能用平方差公式进行因式分解.B、a2b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2

9、b2两平方项符号相同,不能用平方差公式进行因式分解;D、a2b2符合平方差公式的特点,能用平方差公式进行因式分解;故选:D.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2b2(ab)(ab).5、D【分析】将先提公因式因式分解,然后运用平方差公式因式分解即可.【详解】解:,、,均为的因式,故选:D.【点睛】本题考查了提公因式法因式分解以及运用平方差公式因式分解,熟练运用公式法因式分解是解本题的关键.6、B【分析】将化简为,再将代入即可得.【详解】解:,把代入,原式=,故选B.【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式.7、A【分析】

10、将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.8、C【分析】利用平方差公式、完全平方公式、提公因式法分解因式,分别进行判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误;故选:C.【点睛】此题主要

11、考查了公式法分解因式,关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a22ab+b2=(ab)2.9、A【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义逐一判断即可得答案.【详解】A、a2b2(ab)(ab),把一个多项式化为几个整式的积的形式,属于因式分解,故此选项符合题意;B、a(xy)axay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x22x1x(x2)1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x1)(x3)x24x3,是整式的乘法,不是因式分解

12、,故此选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式,叫因式分解;熟练掌握定义是解题关键.10、C【分析】根据提公因式法、平方差公式以及十字相乘法进行解答.【详解】解:A、原式x(x4),故本选项不符合题意;B、原式(2x+y)(2xy),故本选项不符合题意;C、原式(x+1)2,故本选项符合题意;D、原式(x+1)(x6),故本选项不符合题意,故选:C.【点睛】本题主要考查了提公因式法、平方差公式以及十字相乘法因式分解,属于基础题.11、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D

13、.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.12、C【分析】分别利用平方差公式分解因式进而得出答案.【详解】解:A、(2+x)(2x),可以用平方差公式分解因式,故此选项错误;B、(y+x)(yx),可以用平方差公式分解因式,故此选项错误;C、,不可以用平方差公式分解因式,故此选项正确;D、(1+2x)(12x),可以用平方差公式分解因式,故此选项错误;故选:C.【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.13、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即

14、可求得答案.注意分解要彻底.【详解】解:A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.14、C【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】A. x2+2x1(x1)2,故A不符合题意;B. a2b2=(a+b)(ab),故B不符合题意;C. x2+4x+4(x+2)2,是因式分解,故C符合题意;D. ax2aa(x21)=a(x+1)(x-1),分解

15、不完全,故D不符合题意;故选:C.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义.15、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x39xx(x29)x(x3)(x3).故选:B.【点睛】本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.二、填空题1、-3或5【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:x2-2(m-1)x+16能用完全平方公式进行因式分解,-2(m-1)=8,解得:m=-3或5.故答案为:-3或5.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.2、【分析】根据因式分解的定义

16、,观察该多项式存在公因式,故.【详解】解:.故答案为:.【点睛】本题主要考查用提公因式法进行因式分解,解题的关键是熟练掌握提取公因式法.3、【分析】利用提公因式法分解即可.【详解】解:故答案为:【点睛】此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.4、【分析】找出多项式中各单项式的公共部分即可.【详解】解:多项式的公因式是:,故答案为:.【点睛】本题主要考查公因式的概念,找出多项式中各单项式的公共部分是解题的关键.5、a(a+1)(a-1)【分析】先找出公因式,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:故答案为:.【点睛】本题考查了用提公因式法分解因式,

17、准确找出公因式是解题的关键.6、64 9 【分析】利用平方差公式可得,进而可得答案.【详解】解:多项式可分解因式,m=64,n=9.故答案为:64,9.【点睛】此题主要考查了因式分解,关键是掌握平方差公式:a2-b2=(a+b)(a-b).7、21【分析】把所求的式子提取公因式mn,得mn(m-n),把相应的数字代入运算即可.【详解】解:mn=3,m-n=7,m2n-mn2=mn(m-n)=37=21.故答案为:21.【点睛】本题主要考查因式分解-提公因式法,解答的关键是把所求的式子转化成含已知条件的式子的形式.8、(x4)(x+3)【分析】根据甲、乙看错的情况下得出a、b的值,进而再利用十字

18、相乘法分解因式即可.【详解】解:因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),b6(2)12,又王勇看错了b的值,分解的结果为(x+2)(x3),a3+21,原二次三项式为x2x12,因此,x2x12(x4)(x+3),故答案为:(x4)(x+3).【点睛】本题主要考查了十字相乘分解因式,解题的关键在于能够熟练掌握十字相乘法.9、16【分析】将代数式因式分解,再将已知式子的值代入计算即可.【详解】解:,=16故答案为:16.【点睛】此题考查代数式求值,因式分解的应用,注意整体代入思想是解答此题的关键.10、【分析】根据十字相乘法分解因式,即可得到答案.【详解】故答

19、案为:.【点睛】本题考查了分解因式的知识;解题的关键是熟练掌握十字相乘法分解因式的性质,从而完成求解.三、解答题1、(1)不能;(2)3;5;3;5;3;5;(3)x2+8x+15;(4)(x-4)(x+3)【分析】(1)根据完全平方公式的结构特征进行判断即可;(2)将x2+8x+15=x2+(3+5)x+(35)即可得出答案;(3)根据整式乘法计算(x+3)(x+5)的结果即可;(4)将x2+3+(-4)x+3(-4)即可得出答案.【详解】解:(1)因为x2+8x+16=(x+4)2,所以x2+8x+15不是完全平方公式,故答案为:不能;(2)x2+8x+15=x2+(3+5)x+(35)x

20、2+8x+15=x2+(3+5)x+(35)=(x+3)(x+5),故答案为:3,5,3,5,3,5;(3)(x+3)(x+5)=x2+5x+3x+15=x2+8x+15,x2+8x+15=(x+3)(x+5)因此多项式x2+8x+15的因式分解是符合题意的;(4)x2-x-12=x2+3+(-4)x+3(-4)=(x+3)(x-4).【点睛】本题考查了十字相乘法分解因式,掌握x2+(a+b)x+ab=(x+a)(x+b)的结构特征是正确应用的前提.2、(1);(2)【分析】(1)先提公因式x,再利用平方差公式进行分解即可;(2)利用完全平方公式进行分解即可;【详解】解:(1);(2);【点睛】考查提公因式法、公式法分解因式,正确的找出公因式、掌握平方差、完全平方公式的结构特征是应用的前提.3、【分析】先把化为 再代入可得,利用非负数的性质求解 从而可得的值,再代入代数式求值即可.【详解】解:,代入得:, 可得:,所以.【点睛】本题考查的是非负数的性质,二元方程组的代换思想,求解代数式的值,运用完全平方公式分解因式,掌握“把原条件转化为非负数的和”是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁