精品解析2022年人教版九年级数学下册第二十七章-相似专项练习试题(含答案及详细解析).docx

上传人:知****量 文档编号:28195479 上传时间:2022-07-26 格式:DOCX 页数:33 大小:696.33KB
返回 下载 相关 举报
精品解析2022年人教版九年级数学下册第二十七章-相似专项练习试题(含答案及详细解析).docx_第1页
第1页 / 共33页
精品解析2022年人教版九年级数学下册第二十七章-相似专项练习试题(含答案及详细解析).docx_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《精品解析2022年人教版九年级数学下册第二十七章-相似专项练习试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版九年级数学下册第二十七章-相似专项练习试题(含答案及详细解析).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版九年级数学下册第二十七章-相似专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一种数学课本的宽与长之比为黄金比,已知它的长是26cm,那么它的宽是()cmA26+26B2626C13+13D

2、13132、如图在ABC外任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得到DEF,则下列说法正确的个数是()ABC与DEF是位似图形;ABC与DEF是相似图形;ABC与DEF的周长比为1:2;ABC与DEF的面积比为4:1A1个B2个C3个D4个3、如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高为1.5m,测得AB3m,BC7m,则建筑物CD的高是( )mA3.5B4C4.5D4、如图1,物理课上学习过利用小孔成像说明光的直线传播现将图1抽象为图2,其中线段AB为蜡烛的火焰,线段AB为其倒立的像如果蜡烛火焰AB的高度为2cm,倒立的像AB的高度为5cm,

3、线段OA的长为4cm,那么线段OA的长为()A4cmB5cmC8cmD10cm5、如图,在RtABC中,C90,AB10,BC8点P是边AC上一动点,过点P作PQAB交BC于点Q,D为线段PQ的中点,当BD平分ABC时,AP的长度为( )ABCD6、如图,在边长为2的正方形ABCD中,已知BE1,将ABE沿AE折叠,点G与点B对应,连结BG并延长交CD于点F,则GF的长为()ABCD7、如图,RtABC中,ACB90,分别以AB,BC,AC为边在ABC外部作正方形ADEB,CBFG,ACHI将正方形ABED沿直线AB翻折,得到正方形ABED,AD与CH交于点N,点E在边FG上,DE与CG交于点

4、M,记ANC的面积为S1,四边形的面积为S2,若CN2NH,S1+S214,则正方形ABED的面积为()A25B26C27D288、若,则为( )A1:2B2:1C2:3D1:39、在小孔成像问题中,如图所示,若点O到的距离是,点O到的距离是,则像的长与物体长的比是( )ABCD10、如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D将ODA绕点O顺时针旋转得到ODA,当点D的对应点D落在OA上时,DA的延长线恰好经过点C,则点B的坐标为( )A(2,2)B(2,2)C(21,2)D(21,2)第卷(非选择题 70分)二、填空题(5小题,每小题

5、4分,共计20分)1、如图,直线l与半径为8的O相切于点A,P是O上的一个动点(不与点A重合),过点P作PBl于B,连接PA设PA=x,PB=y,则(x-y)的最大值是_2、已知线段AB=30cm,C为线段AB的黄金分割点(ACBC),则AC=_3、如图,矩形,对角线与双曲线交于点,若,则矩形的面积为_4、若在比例尺为的地图上,测得两地的距离为1.5厘米,则这两地的实际距离是_千米5、如果四边形ABCD的四条边长分别为54cm、48cm、45cm、63cm,另一个和它相似的四边形的最长边长为21cm,那么这个四边形的最短边的长度为_三、解答题(5小题,每小题10分,共计50分)1、如图,点是一

6、次函数与反比例函数()的图象的一个交点,点是一次函数与轴的交点(1)求反比例函数表达式;(2)点是轴正半轴上的一个动点,设,过点作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,交一次函数的图象于点当时,求ABC的面积;当a为何值时,ACF与EQF相似2、AB是O的弦,ODAB交O于点F,P是OF延长线上一点,连接PA、PB、AF、OA(1)如图1,若OAAP,求证:DAFPAF;(2)如图2,若DAFAPF,AB16,OP22,求OD的长3、如图,在带有网格的平面直角坐标系中,网格边长为一个单位长度,给出了三角形ABC(1)

7、作出关于x轴对称的;(2)以坐标原点为位似中心在图中的网格中作出的位似图形,使与的位似比为1:2;(3)若的面积为3.5平方单位,求出的面积4、如图1,在中,平分,且于点D(1)判断的形状;(2)如图2,在(1)的结论下,若,求的长;(3)如图3,在(1)的结论下,若将绕着点D顺时针旋转得到,连接,作交于点F试探究与的数量关系,并说明理由5、如图,已知AB是O的直径,锐角DAB的平分线AC交O于点C,作CDAD,垂足为D,直线CD与AB的延长线交于点E(1)求证:直线CD为O的切线;(2)当AB2BE,且CE时,求AD的长-参考答案-一、单选题1、D【解析】【分析】根据一种数学课本的宽与长之比

8、为黄金比,即可得到宽:长,由此求解即可【详解】解:一种数学课本的宽与长之比为黄金比,宽:长,长是26cm,宽,故选D【点睛】本题主要考查了黄金比,解题的关键在于能够熟练掌握黄金分割比例2、C【解析】【分析】由题意根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似的定义可得,与是位似图形,也就是特殊的相似图形,故正确;点D、E、F分别是、的中点,与的位似比为21,周长比为21,面积比为41,故错误,正确故选:C【点睛】本题主要考查位似图形的性质,熟练

9、掌握位似图形的性质是解决问题的关键3、D【解析】【分析】根据题意和图形,利用三角形相似的性质,可以计算出CD的长,从而可以解答本题【详解】解:EBAC,DCAC,EBDC,ABEACD,BE=1.5m,AB=3m,BC=7m,AC=AB+BC=10m,解得,DC=5,即建筑物CD的高是5m;故选:D【点睛】本题考查相似三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答4、D【解析】【分析】由AB/ AB,可得AOBAOB进而根据相似三角形的性质列出比例代入数据求解即可【详解】AB/ AB,AOBAOB, ,即 ,cm,故选D【点睛】本题考查了相似三角形的判定与性质,掌握相似三角形的

10、性质与判定是解决本题的关键5、B【解析】【分析】根据勾股定理求出AC,根据平行线的性质、角平分线的定义得到QDBQ,证明CPQCAB,根据相似三角形的性质计算即可【详解】解:设BQx,在RtABC中,C90,AB10,BC8,由勾股定理得,BD平分ABC,QBDABD,PQAB,QDBABD,QBDQDB,可设QDBQx,则CQ=8-x,D为线段PQ的中点,QP2QD2x,PQAB,CPQCAB,即解得:,APCACP,故选B【点睛】本题主要考查了角平分线的定义,平行线的性质,等腰三角形的性质与判定,相似三角形的性质与判定,勾股定理,熟练掌握相似三角形的性质与判定条件是解题的关键6、B【解析】

11、【分析】如图所示:设BF与AE相交于M,先证明EBMBAE,即可利用ASA证明RtABERtBCF得到CFBE1,从而求出,然后证明EBMFBC,得到 ,即 ,求出 ,即可得到BG2BM,即可得到FGBFBG3 【详解】解:如图所示:设BF与AE相交于M,四边形ABCD是正方形,ABBC,ABCBCD90,ABE沿AE折叠得到AGE,AE是线段BG的垂直平分线,EMB90,EBM+BEM90,BAE+BEM90,EBMBAE,在RtABE和RtBCF中,RtABERtBCF(ASA),CFBE1,又EBMFBC,BMEBCF,EBMFBC,即,BG2BM,FGBFBG3,故选B【点睛】本题主要

12、考查了正方形的性质,折叠的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理等等,熟练掌握相似三角形的性质与判定条件是解题的关键7、B【解析】【分析】设,则,证明,得出,根据,再证明,得出,可以得出,得出等式,求解即可得到【详解】解:设,则,由题意知:,在和中,在中由勾股定理得:,在和中,解得:,故选:B【点睛】本题考查正方形的性质、三角形相似、三角形全等、勾股定理,解题的关键是掌握相应的判定定理,通过转化的思想及等量代换的思想进行求解8、A【解析】【分析】可写成的形式,解得的值,即可得到的值【详解】解:可写成故选A【点睛】本题考察了比例,多项式与单项式的除法解题的关键在于将比例的

13、符号作为除号或分号进行处理9、B【解析】【分析】由题意可知与是相似三角形,相似比为1:3,故CD:AB=1:3【详解】由小孔成像的定义与原理可知与高的比为6:18=1:3与相似比为1:3CD:AB=1:3故选:B【点睛】本题考查了相似三角形的性质,用一个带有小孔的板遮挡在屏幕与物之间,屏幕上就会形成物的倒像,我们把这样的现象叫小孔成像相似三角形的对应边成比例,对应角相等,相似三角形的对应高的比,对应中线的比,对应角平分线的比都等于相似比10、D【解析】【分析】连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标【详解】解:如图,连接,轴,绕点顺时针旋转得

14、到,点B的坐标为:,故选:D【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键二、填空题1、4【解析】【分析】作直径AC,连接CP,得出APCPBA,利用相似三角形的性质得出y=x2,所以x-y=x-x2=-x2+x=-(x-8)2+4,当x=8时,x-y有最大值是4【详解】解:如图,作直径AC,连接CP, CPA=90,AB是切线,CAAB,PBl,ACPB,CAP=APB,APCPBA,PA=x,PB=y,半径为8,y=x2,所以x-y=x-x2=-x2+x=-(x-8)2+4,当x=8时,x-y有最大值是4,故答案为

15、:4【点睛】本题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键2、cm【解析】【分析】由黄金分割点的含义知,则可求得AC的长度【详解】由题意,故答案为:cm【点睛】本题考查了黄金分割点,所谓黄金分割点,是指线段AB上的一个点C,若BC:AC=AC:AB,则称点C是线段AB的黄金分割点,则可得;掌握黄金分割点的含义是关键3、50【解析】【分析】根据反比例函数系数k的几何意义可得SODE9,利用相似三角形的性质,可得SADE:SOBA9:25,进而求出SOBA25,由矩形的性质得到答案【详解】解:过点D作DEOA,垂足为E,则SODE1

16、89,是矩形ABAODEAB,ODEOBA,SADE:SOBA9:25,SOBA25,矩形OABC的面积为25250,故答案为:50【点睛】本题考查反比例函数系数k的几何意义,相似三角形以及矩形的性质,理解反比例函数系数k的几何意义以及相似三角形的性质是解决问题的关键4、15【解析】【分析】设两地间的实际距离是xcm,由在比例尺为1:1000 000的地图上,量得两地间的距离为1.5厘米,即可得方程 ,解方程即可求得x的值,然后换算单位即可求得答案【详解】解:设两地间的实际距离是xcm,比例尺为1:1000 000,量得两地间的距离为1.5cm,解得:x=1500000,1500000cm=1

17、5km,两地间的实际距离是15千米,故答案为:15【点睛】本题考查了比例的性质比例尺的性质,解题的关键是根据题意列方程,要注意统一单位5、15cm【解析】【分析】根据相似多边形的性质求解即可【详解】解:四边形ABCD与另一个四边形相似,设另一个四边形的最短边的长度为x,解得:这个四边形的最短边的长度为15cm故答案为:15cm【点睛】此题考查了相似多边形的性质,解题的关键是熟练掌握相似多边形的性质相似多边形的对应边成比例,对应角相等三、解答题1、(1)y=6x;(2)3.5;(3)当a3或a-1+733【解析】【分析】(1)由一次函数解析式可得点M的坐标为(3,2),然后把点M的坐标代入反比例

18、函数解析式,求得k的值,可得反比例函数表达式;(2)作CDAB交AB于点D当a4时,利用函数解析式可分别求出点A、B、C、D的坐标,于是可得AB和CD的长度,即可求得ABC的面积;分ACF为直角,FAC为直角两种情况,利用数形结合即可求解【详解】解:(1)把M(3,m)代入yx+1,则m2将(3,2)代入y=kx,得k6,则反比例函数解析式是:y=6x;(2)作CDAB交AB于点D当a4时,A(4,5),B(4,1.5),则AB3.5点Q为OP的中点,Q(2,0),C(2,3),则D(4,3),CD2,SABCABCD=123.523.5;点E,F在yx+1上点E(-1,0) F(a2,a2+

19、1)Q(a2,0)EQ=QF EQF为等腰直角三角形,当ACF与EQF相似时,则ACF为等腰直角三角形,i、当ACF为直角时,则点C和点A的纵坐标相同,APCQ=12a,又A在直线yx+1上,12a=a+1,解得a3或a4(舍去),当a的值为3时,ACF与EQF相似ii、当FAC为直角时,过A作ANCQ如图由题意得A(a,a+1),C(a2,12a)ACF为等腰直角三角形N(a2,a+1)ANCQAN=CNa2=12a-a-1解得:a-2+2736=-1+733 或a-2-2736=-1-733(舍去)当a3或a-1+733时,ACF与EQF相似【点睛】本题综合考查了待定系数法求函数解析式,函

20、数图象上点的坐标特征以及相似的性质难度较大,解题时需要注意数形结合2、(1)证明见解析;(2)6【解析】【分析】(1)在ADF中有OFA+DAF=90,在OAF中有OAF+PAF=90,因为AO=OF=r,由等角对等边有OFA=OAF,故DAF=PAF(2)由题意可知ADFDAP,故有ADDF=DPAD,设OD=x,在OAD中由勾股定理有AO2=OD2+AD2则有AO=x2+64,DF=OF-OD=x2+64-x,代入ADDF=DPAD,有82=(x2+64-x)(22-x),解得x=6,x=703(舍)【详解】(1)OFA+DAF=90,OAF+PAF=90又AO=OF=rOFA=OAFDA

21、F=PAF(2)由DAFAPF,ADF=ADPADFDAPADDF=DPAD设DF=x在OAD中由勾股定理有AO2=OD2+AD2即AO=x2+64,DF=OF-OD=x2+64-x则82=(x2+64-x)(22-x)64=(x2+64-x)(x2+64+x)(x2+64+x)(22-x)64=(64(x2+64+x)(22-x)x2+64+x=(22-x)x2+64=22-2xx2+64=4x2-88x+484化简得3x2-88x+420=0解得x=6,x=703(舍)【点睛】本题考查了圆与三角形的综合问题,由相似三角形成比例以及勾股定理列两个方程联立求解是解题的关键3、(1)见解析;(2

22、)见解析;(3)14平方单位【解析】【分析】(1)根据轴对称性质即可画出ABC关于x轴对称的;(2)根据位似图形的性质即可画出以点O为位似中心的位似图形,与的位似比为1:2;(3)利用相似三角形的性质计算即可【详解】解:(1)如图,即为所求作;(2)如图,即为所求作;(3)与的位似比为1:2,ABAB=12,SABCSABC=(ABAB)2=14,的面积为3.5平方单位,即的面积为3.5平方单位,的面积为:2SABC=43.5=14平方单位【点睛】本题考查了作图-轴对称变换,位似变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型4、(1)是等腰直角三角形,证明见解析;(2);(3)证明

23、见解析【解析】【分析】(1)先求解取的中点 连接 再证明在以为圆心,为半径的同一个圆上,从而可得答案.(2)如图, 把顺时针旋转得到 连接 过作 交的延长线于 证明 证明 求解 再利用勾股定理可得答案;(3)如图,连接证明 可得 结合(1)问的结论可得答案.【详解】解:(1) 平分, 取的中点 连接 在以为圆心,为半径的同一个圆上, 为等腰直角三角形.(2)如图, 把顺时针旋转得到 连接 过作 交的延长线于 (3)理由如下:如图,连接 BFA=DEP=90, DPEABF, DPAB=DEAF, DEAF=DBAB=22, 即AF=2DE.【点睛】本题考查的是等腰直角三角形的判定与性质,旋转的

24、性质,相似三角形的判定与性质,圆的确定,圆周角定理的应用,是典型的综合题,熟练的运用图形的性质,作出恰当的辅助线是解本题的关键.5、(1)见解析;(2)32【解析】【分析】(1)根据角平分线的意义以及等腰三角形等边对等角证明ADCO,即可得出结论;(2)由已知得OE2OC,在RtEOC中,设COx,即OE2x,由勾股定理得:CEx,由此能求出AD【详解】解:(1)如图,连接OC,AC平分DAB,DACCAB,OAOC,OCACAB,OCADAC,ADCO,CDAD,OCCD,OC是O直径且C在半径外端,CD为O的切线;(2)解:直径AB2BE,OE2OC,在RtEOC中,设COx,即OE2x,由勾股定理得:CEx,又CE,x1,即OC1,OCAD,EOCEAD,OCAD=OEAE,即1AD=23,解得AD32【点睛】本题考查了切线的判定,平行线的判定与性质,勾股定理,相似三角形的判定与性质,熟练掌握基础知识是解本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁