《精品解析2021-2022学年人教版八年级数学下册第十九章-一次函数章节练习试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年人教版八年级数学下册第十九章-一次函数章节练习试题(含答案解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十九章-一次函数章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两名同学在一段2000m长的笔直公路上进行自行车比赛,开始时甲在起点,乙在甲的前方200m处,他们同时同
2、向出发匀速前进,甲的速度是8m/s,乙的速度是6m/s,先到达终点者在终点处等待设甲、乙两人之间的距离是y(m),比赛时间是x(s),整个过程中y与x之间的函数关系的图象大致是()ABCD2、一个一次函数图象与直线yx平行,且过点(1,25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )A4个B5个C6个D7个3、在平面直角坐标系内,一次函数yk1x+b1与yk2x+b2的图象如图所示,则关于x,y的方程组的解是()ABCD4、一次函数y1kx+b与y2mx+n的部分自变量和对应函数值如表:x21012y112345x21012y252147
3、则关于x的不等式kx+bmx+n的解集是()Ax0Bx0Cx1Dx15、下列命题中,真命题是( )A若一个三角形的三边长分别是a、b、c,则有B(6,0)是第一象限内的点C所有的无限小数都是无理数D正比例函数()的图象是一条经过原点(0,0)的直线6、下列各图中,不能表示y是x的函数的是( )ABCD7、若函数满足,则函数的图象可能是( )ABCD8、一次函数ymxn(m,n为常数)的图象如图所示,则不等式mxn0的解集是( )Ax2Bx2Cx3Dx39、下列函数中,自变量的取值范围选取错误的是( )Ay=2x2中,x取全体实数By=中,x取x-1的实数Cy=中,x取x2的实数Dy=中,x取x
4、-3的实数10、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )Ay=n(+0.6)By=n()+0.6Cy=n(+0.6)Dy=n()+0.6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数f(x)+x,则f()_2、直线y=2x-3与x轴的交点坐标是_,与y轴的交点坐标是_3、如图,在ABC中,C=90,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿AC运动,然后以1cm/s的速度沿CB运动若设点P运动的时间是t秒,那么当t=_,APE的面积等于64、在平
5、面直角坐标系中,已知两条直线l1:y2x+m和l2:yx+n相交于P(1,3)请完成下列探究:(1)设l1和l2分别与x轴交于A,B两点,则线段AB的长为 _(2)已知直线xa(a1)分别与l1l2相交于C,D两点,若线段CD长为2,则a的值为 _5、对于直线y=kx+b(k0):(1)当k0,b0时,直线经过第_象限;(2)当k0,b0时,直线经过第_象限;(3)当k0时,直线经过第_象限;(4)当k0,b0的解集是_;不等式-2x-60的解集是_(3)求出函数图象与坐标轴的两个交点之间的距离5、为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A、B两种不同型号的
6、篮球共300个已知购买3个A型篮球和2个B型篮球共需340元,购买2个A型篮球和1个B型篮球共需要210元(1)求购买一个A型篮球、一个B型篮球各需多少元?(2)若该校计划投入资金W元用于购买这两种篮球,设购进的A型篮球为t个,求W关于t的函数关系式;(3)学校在体育用品专卖店购买A、B两种型号篮球共300个,经协商,专卖店给出如下优惠:A种球每个降价8元,B种球打9折,计算下来,学校共付费16740元,学校购买A、B两种篮球各多少个?-参考答案-一、单选题1、C【解析】【分析】先算出甲到达终点的时间,由此算出二者之间的最大距离,再算出乙到达终点的时间,由此找出点的坐标,结合点的坐标利用待定系
7、数法求出函数解析式,根据函数解析式分析四个选项即可得出结论【详解】解:当甲跑到终点时所用的时间为:20008250(秒),此时甲乙间的距离为:20002006250300(米),乙到达终点时所用的时间为:(2000200)6300(秒),最高点坐标为(250,300)甲追上乙时,所用时间为(秒)当0x100时,设y关于x的函数解析式为yk1x+b1,有,解得:,此时y2x+200;当100x250时,设y关于x的函数解析式为yk2x+b2,有,解得:,此时y2x200;当250x300时,设y关于x的函数解析式为yk3x+b3,有,解得:,此时y6x+1800整个过程中y与x之间的函数图象是C
8、故选:C【点睛】此题考查了一次函数的应用,解题的关键是理解题意,找到题中的关键点,利用待定系数法求得每段函数解析式2、A【解析】【分析】由题意可得:求出符合条件的直线为5x4y750,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案【详解】解:设直线AB的解析式为ykxb,一次函数图象与直线yx平行,k,又所求直线过点(1,25),25(1)b,解得b,直线AB为yx,此直线与与x轴、y轴的交点分别为A(15,0)、B(0,),设在直线AB上并且横、纵坐标都是整数
9、的点的横坐标是x14N,纵坐标是y255N,(N是整数)因为在线段AB上这样的点应满足0x14N15,且y255N0,解得:N4,所以N1,2,3,4共4个,故选:A【点睛】本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键3、C【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解【详解】解:一次函数yk1xb1与yk2xb2的图象的交点坐标为(2,1),关于x,y的方程组的解是故选:C【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标4、D【解析】【分析】根据统计表确定两个函数的增减性以及函数的交点,然后
10、根据增减性判断【详解】解:根据表可得y1kx+b中y随x的增大而增大;y2mx+n中y随x的增大而减小,且两个函数的交点坐标是(1,2)则当x1时,kx+bmx+n故选:D【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键5、D【解析】【分析】根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解【详解】解:A、若一个三角形的三边长分别是a、b、c,不一定有,则原命题是假命题,故本选项不符合题意;B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;C、无限不循环小数都是无理数, D、正比例函
11、数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;故选:D【点睛】本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键6、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值
12、,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键7、D【解析】【分析】由可得a,c互为相反数,由可得a0,根据一次函数的图象与性质即可得解【详解】解:,a,c互为相反数,a0,函数的图象经过一、二、四象限故选D【点睛】本题考查了一次函数图象与性质,相反数的性质对于一次函数y=kx+b(k0),当k0时,图象经过一
13、、三象限,当k0时,图象与y轴正半轴有交点,当b=0时,图象经过原点,当b0时,直线必过一、三象限,k0时,直线必过一、二象限,b0时,直线过一、三象限,b0时,直线过一、二象限,则直线经过第一、二、三象限;故答案为:一、二、三(2)当k0时,直线过一、三象限,b0时,直线过三、四象限,则直线经过第一、三、四象限;故答案为:一、三、四(3)当k0时,直线过一、二象限,则直线经过第一、二、四象限;故答案为:一、二、四(4)当k0时,直线过二、四象限,b0时,直线过三、四象限,则直线经过第二、三、四象限故答案为:二、三、四【点睛】本题考查了一次函数的图象与性质,b的几何意义,关键是数形结合三、解答
14、题1、a的值为13【解析】【分析】设直线的解析式为y=kx,把A点的坐标代入求得k值,再把B点的坐标代入即可求出a的值【详解】解:设直线OA的解析式为:y=kx,把A(1,6)代入得:6=-k,k=-6,直线OA的解析式为:y=-6x,点O(0,0),A(1,6),B(a,2)在同一条直线上,即B点在直线OA上,把B(a,2)代入y=-6x得:-2=-6a,a=13,a的值为13【点睛】本题考查了待定系数法求函数解析式,函数解析式与图象的关系,知道图象上的点的坐标满足函数解析式是解题的关键2、(1)直线AB的解析式为y=-2x+6;(2)F(6,0);(3)m=-13或m=3【解析】【分析】(
15、1)在RtAOD中,利用勾股定理确定AD=10,由对称设OB=BC=a,OA=AC=6,CD=4,再利用勾股定理即可确定点B的坐标,然后代入解析式即可;(2)由(1)得,BC=OB=3,根据O点关于直线AB的对称点C点在直线AD上,可得AOBABC,即两个三角形的面积相同,使ABF的面积与ABC的面积相同,只需要找到ABF的面积与AOB的面积相同的点即可,设点F(x,0),两个三角形的高均为线段OA长度,只需要底相同即可,根据底相同列出方程求解即可得;(3)设若直线GE、GF与直线AB夹角等于45,由图可得GEF为等腰直角三角形,作EMGM于M,FNGN于N,可得EMG=GNF=90,GE=G
16、F,利用全等三角形的判定及性质可得EM=GN,GM=FN,直线l过G(5,2),直线l的解析式为:y=mx+2-5m,设E坐标为(t,-2t+6),则M(5,-2t+6),由各线段间的数量关系可得F点坐标为(1+2t,t-3),将其代入直线AB的解析式,即可得出t的值,然后点E、F坐标,代入解析式求解即可【详解】解:(1)y=kx+6,A(0,6),即OA=6,又D(8,0),OD=8,设直线AD的解析式为y=nx+6,将点D(8,0)代入得,直线AD的解析式为y=-34x+6.在RtAOD中,AD=62+82=10,点O、点C关于直线AB对称,设OB=BC=a,OA=AC=6,CD=4,BD
17、=8-a,在RtBCD中,a2+42=(8-a)2,a=3,B(3,0),将点B代入y=kx+6直线AB的解析式为y=-2x+6;(2)由(1)得,BC=OB=3,如图所示:O点关于直线AB的对称点C点在直线AD上,AOBABC,SAOB=SABC,使SABF=SABC,则设点F(x,0),两个三角形的高均为线段OA长度,使底相同即:x-OB=x-3=3,解得:x=6或x=0(舍去),F(6,0);(3)如图,设若直线GE、GF与直线AB夹角等于45,即GEF为等腰直角三角形,作EMGM于M,FNGN于N,EMG=GNF=90,GE=GF,EGN=90,EGM+FGN=90,EGM+MEG=9
18、0,MEG=FGN,在MEG与NGF中,EMG=GNFMEG=FGNGE=GF,GEMFGN,EM=GN,GM=FN,直线l过G(5,2),即2=5m+b,解得:b=2-5m,直线l的解析式为:y=mx+2-5m,设E坐标为(t,-2t+6),则M(5,-2t+6),EM=GN=5-t,GM=FN=-2t+6-2=-2t+4,由线段间的关系可得:F点坐标为(1+2t,t-3),F点在直线AB上,t=-2(1+2t)+6,解得:t=75,E(75,165),F(195,-85),当直线l过E点时,75m+2-5m=165,解得:m=-13;当直线l过F点时,195m+2-5m=-85,解得:m=
19、3;所以m=-13或m=3【点睛】本题主要考查了一次函数的综合应用,涉及勾股定理、全等三角形的判定和性质等知识点,作出相应图象,根据图象之间的关系进行求解是本题解题的关键3、(1)见解析;(3,2);(2)152;(3)(0,0)【解析】【分析】(1)根据纵不变,横相反,确定三个对称点D(3,2),E(6,-4),F(2,-1),依次连接起来即可;(2)把三角形补形成矩形,利用面积差计算;(3)先确定直线BD的解析式,令x=0,确定函数对应的y值,即可确定点P的坐标【详解】(1)ABC的三个顶点的坐标分别为A(3,2),B(6,4),C(2,1)关于y轴的对称点坐标分别为:点D(3,2),E(
20、6,-4),F(2,-1),依次连接起来,如图所示,此时点D(3,2);(2)如图,把三角形DEF补形成矩形GHPE,则矩形的长为GE=HP=2-(-4)=6,宽为GH=EP=6-2=4,GD=6-3=3,FP=-1-(-4)=3,HF=3,HD=1,SDEF=S矩形GHPE-SEGD-SDHF-SFPE,SDEF=64-1263-1213-1243=152;(3)点A关于y轴的对称点为点D(3,2),连接BD,交y轴于点P,此时PA+PB最小,B(-6,-4),设直线BD的解析式为y=kx+b,3k+b=2-6k+b=-4,解得k=23b=0,y=23x,令x=0, y=0,点P的坐标为(0
21、,0)【点睛】本题考查了坐标系中轴对称问题,两点间的距离,待定系数法确定一次函数的解析式,将军饮马河原理,熟练掌握对称点计算方法,灵活运用待定系数法和将军饮马河原理是解题的关键4、(1)见解析;(2)x-3;(3)BC=35【解析】【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-
22、6,一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,一次函数y=-2x-6与x轴交点B的坐标为(-3,0)描点连线画出函数图象,如图所示(2)观察图象可知:当x-3时,一次函数y=-2x-6的图象在x轴下方不等式-2x-60的解集是x-3;不等式-2x-6-3故答案是:x-3,x-3;(3)B(-3,0),C(0,-6),OB=3,OC=6,BC=OB2+OC2=35【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;
23、(3)利用勾股定理求出直角三角形斜边长度5、(1)一个A型篮球为80元,一个B型篮球为50元;(2)函数解析式为:W=30t+15000(0t300);(3)A型篮球120个,则B型篮球为180个【解析】【分析】(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意列出方程组求解即可得;(2)A型篮球t个,则B型篮球为(300-t)个,根据单价、数量、总价的关系即可得;(3)根据A型篮球与B型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得【详解】解:(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意可得:3x+2y=3402x+y=210,解得:x=80y=50,一个A型篮球为80元,一个B型篮球为50元;(2)A型篮球t个,则B型篮球为(300-t)个,根据题意可得:W=80t+50300-t=30t+15000(0t300),函数解析式为:W=30t+15000(0t300);(3)根据题意可得:A型篮球单价为(80-8)元,B型篮球单价为500.9元,则16740=(80-8)t+500.9300-t,解得:t=120,300-t=180,A型篮球120个,则B型篮球为180个【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键