真题汇总2022年石家庄新华区中考数学二模试题(含答案及解析).docx

上传人:知****量 文档编号:28191990 上传时间:2022-07-26 格式:DOCX 页数:29 大小:638.20KB
返回 下载 相关 举报
真题汇总2022年石家庄新华区中考数学二模试题(含答案及解析).docx_第1页
第1页 / 共29页
真题汇总2022年石家庄新华区中考数学二模试题(含答案及解析).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《真题汇总2022年石家庄新华区中考数学二模试题(含答案及解析).docx》由会员分享,可在线阅读,更多相关《真题汇总2022年石家庄新华区中考数学二模试题(含答案及解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年石家庄新华区中考数学二模试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知+=0,则a-b的值是( ) A-1B1C-5D52、已知ab,则

2、下列不等式中不正确的是()A2a2bBa5b5C2a2bD3、一元二次方程的一次项的系数是( )A4B-4C1D54、在解方程时,去分母正确的是( )ABCD5、关于x,y的方程组的解满足xy6,则m的最小整数值是()A1B0C1D26、已知三角形的一边长是6 cm,这条边上的高是(x4)cm,要使这个三角形的面积不大于30 cm2,则x的取值范围是()Ax6Bx6Cx4D4x67、计算12a2b4()()的结果等于( )A9aB9aC36aD36a8、下列等式成立的是( )ABCD9、如图,在O中,直径CD弦AB,则下列结论中正确的是AAC=ABBC=BODCC=BDA=B0D10、下列各数

3、中,是无理数的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若不等式组的解集是1x1,则(ab)2019_ 线 封 密 内 号学级年名姓 线 封 密 外 2、已知,那么它的余角是_,它的补角是_3、a是不为1的数,我们把称为a的差倒数,如:2的差倒数为;的差倒数是;已知是的差倒数,是的差倒数,是的差倒数,依此类推,则_4、双曲线,当时,随的增大而减小,则_5、如图,、是线段上的两点,且是线段的中点若,则的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,线段厘米,点D和点C在线段AB上,且,点P从点A出发以4厘米/秒的速度沿射线AD向点C运

4、动,点P到达点C所在位置后立即按照原路原速返回,到达点D所在位置后停止运动,点Q从点B出发以1厘米/秒的速度沿着射线BC的方向运动,点Q到达点D所在的位置后停止运动点P和点Q同时出发,点Q运动的时间为t秒(1)求线段AD的长度;(2)当点C恰好为PQ的中点时,求t的值;(3)当厘米时,求t的值2、(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合研究数轴发现:如图所示的数轴上,点O为原点,点A、B表示的数分别是a和b,点B在点A的右边(即),则A、B两点之间的距离(即线段的长)(问题情境)如图所示,数轴上点A表示的数,点B表示的数为,线段的中点C表示的数为x点M从点A出发

5、,以每秒2个单位长度的速度沿数轴向右运动;同时点N从点B出发,以每秒3个单位的速度沿数轴向左运动设运动时间为t秒(综合运用)根据“背景知识”和“问题情境”解答下列问题:(1)填空:A、B两点之间的距离_,线段的中点C表示的数_用含t的代数式表示:t秒后,点M表示的数为_;点N表示的数为_(2)求当t为何值时,点M运动到线段的中点C,并求出此时点N所表示的数(3)求当t为何值时,3、计算(1);(2);(3);(4)解方程:(5)先化简,再求值:已知,其中, 线 封 密 内 号学级年名姓 线 封 密 外 4、如图,在矩形ABCD中,E是CD边上的一点,M是BC边的中点,动点P从点A出发沿边AB以

6、的速度向终点B运动,过点P作于点H,连接EP设动点P的运动时间是(1)当t为何值时,?(2)设的面积为,写出与之间的函数关系式(3)当EP平分四边形PMEH的面积时,求t的值(4)是否存在时刻t,使得点B关于PE的对称点落在线段AE上?若存在,求出t的值;若不存在,说明理由5、在平面直角坐标系中,抛物线与x轴交于点和点B,与y轴交于点C,顶点D的坐标为(1)直接写出抛物线的解析式;(2)如图1,若点P在抛物线上且满足,求点P的坐标;(3)如图2,M是直线BC上一个动点,过点M作轴交抛物线于点N,Q是直线AC上一个动点,当为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标-参考答案-一、单选

7、题1、C【分析】根据绝对值具有非负性可得a+2=0,b-3=0,解出a、b的值,然后再求出a-b即可【详解】解:由题意得:a+2=0,b-3=0,解得:a= -2,b=3,a-b=-2-3=-5,故选:C【点睛】本题考查绝对值,关键是掌握绝对值的非负性2、C【解析】【分析】根据不等式的性质分别对每一项进行分析,即可得出答案【详解】Aab,根据不等式两边同时加上2,不等号方向不变,2a2b,正确;Bab,根据不等式两边同时加5,不等号方向不变,a5b5,正确;Cab,根据不等式两边同时乘以2,不等号方向改变,2a2b,本选项不正确; 线 封 密 内 号学级年名姓 线 封 密 外 Dab,根据不等

8、式两边同时乘以,不等号方向不变,正确故选C【点睛】本题考查了不等式的性质,掌握不等式的性质是解决本题的关键;不等式两边加(或减)同一个数(或式子),不等号的方向不变(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变3、A【分析】方程整理为一般形式,求出一次项系数即可【详解】方程整理得:x2+4x+5=0,则一次项系数为4故选A【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a0)特别要注意a0的条件这是在做题过程中容易忽视的知识点在一般形式中ax2叫二次项,bx叫一次项,c

9、是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项4、A【分析】在方程的左右两边同时乘10,即可作出判断【详解】解:去分母得:,故选:A【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键5、B【解析】【分析】先解方程组,得出x,y的值,再把它代入x+y6即可得出m的范围由此即可得出结论【详解】解方程组,得:x+y6,5m2+(49m)6,解得:m1,m的最小整数值是0故选B【点睛】本题考查了二元一次方程组的解以及求一元一次不等式的整数解,解答此题的关键是解方程组6、D【解析】【分析】根据三角形面积公式列出不等式组,再解不等式组即可【详解】由题意得:,解得:4x6故选D【点

10、睛】本题考查了一元一次不等式组的应用解题的关键是利用三角形的面积公式列出不等式组 线 封 密 内 号学级年名姓 线 封 密 外 7、D【分析】通过约分化简进行计算即可.【详解】原式=12a2b4()()=36a.故选D.【点睛】本题考点:分式的化简.8、D【分析】根据分式的基本性质进行判断.【详解】解:A、分子、分母同时除以-1,则原式=,故本选项错误; B、分子、分母同时乘以-1,则原式=,故本选项错误; C、分子、分母同时除以a,则原式= ,故本选项错误; D、分子、分母同时乘以b,则原式=,故本选项正确.故选D.【点睛】本题考查了分式的基本性质.特别要注意:分式的分子、分母及本身的符号,

11、任意改变其中的两个,分式的值不变.9、B【分析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到C=BOD,从而可对各选项进行判断【详解】解:直径CD弦AB,弧AD =弧BD,C=BOD故选B【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半10、C【分析】根据无理数的概念:无限不循环小数,由此可进行排除选项【详解】解:A是分数,是有理数,选项不符合题意;B,是整数,是有理数,选项不符合题意;C是无理数,选项符合题意;D是整数,是有理数,选项不符合题意

12、线 封 密 内 号学级年名姓 线 封 密 外 故选C【点睛】本题主要考查无理数的概念,熟练掌握无理数的概念是解题的关键二、填空题1、1【解析】【分析】解出不等式组的解集,与已知解集1x1比较,可以求出a、b的值,然后代入即可得到最终答案【详解】解不等式xa2,得:xa+2,解不等式b2x0,得:x不等式的解集是1x1,a+2=1,1,解得:a=3,b=2,则(a+b)2019=(3+2)2019=1故答案为:1【点睛】本题考查了解一元一次不等式组,已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数2、 【分析】根据余角、补

13、角的性质即可求解【详解】解:,故答案为,【点睛】此题考查了补角和余角的性质,理解余角和补角的性质是解题的关键3、【分析】根据题意,可以写出这列数的前几个数,从而可以发现数字的变化特点,进而得到a2019的值【详解】解:,是的差倒数,即,是的差倒数,即,是的差倒数,即,依此类推,故答案为:【点睛】本题考查数字的变化类、新定义,解答本题的关键是明确题意,发现数字的变化特点,求出所求项的值4、 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍【详解】根据题意得:,解得:m=2故答案为2【点睛】本题考查了反比例函数的性质对于反比例函数y

14、=,当k0时,在每一个象限内,函数值y随自变量x的增大而减小;当k0时,在每一个象限内,函数值y随自变量x增大而增大5、【分析】利用已知得出AC的长,再利用中点的性质得出AD的长【详解】解:AB=10cm,BC=4cm,AC=6cm,D是线段AC的中点,AD=3cm故答案为:3cm【点睛】此题主要考查了线段长度的计算问题与线段中点的概念,得出AC的长是解题关键三、解答题1、(1);(2)或;(3)、8,【分析】(1)先求出AC,再求出DC,根据AD=AC-DC即可;(2)表示出CP、CQ的长度,再根据CP=CQ列方程即可,需要注意P到C之前和之后两种情况讨论;(3)表示出BP、BQ的长度,再根

15、据列方程即可,需要注意P到C之前和之后以及P到D之前之后的多种情况讨论;【详解】(1),(2)点Q从点B出发以1厘米/秒的速度沿着射线BC的方向运动,P到达C之前时点C恰好为PQ的中点此时P在C左边,Q在C右边,且CP=CQ解得P到达C之后时点C恰好为PQ的中点 线 封 密 内 号学级年名姓 线 封 密 外 此时P在C左边,Q在C右边,且CP=CQ解得故当点C恰好为PQ的中点时或(3)当P、Q到达C之前时, ,解得当P到达C之后、Q到达C之前时, ,解得当P到达D点时此时,当P到达D点以后、Q到达D之前,解得综上当厘米时,、8,【点睛】此题考查线段和差计算、列一元一次方程解应用题等知识与方法,

16、解题的关键是弄清点在运动时的出发点、方向、速度以及两个动点的运动属于相遇问题还是追及问题等2、(1)10,-12t-6;4-3t;(2);(3)t=1或t=3【分析】(1)根据公式,代入计算即可根据距离公式,变形表示即可;(2)准确表示点M表示的数,点N表示的数,点C表示的数为-1,列式计算即可;(3)根据距离公式,化成绝对值问题求解即可(1)数轴上点A表示的数,点B表示的数为,AB=|-6-4|=10;线段的中点C表示的数为x,4-x=x+6,解得x=-1,故答案为:10,-1根据题意,得M的运动单位为2t个,N的运动单位为3t个,数轴上点A表示的数,点B表示的数为,点M表示的数为2t-6;

17、点N表示的数为4-3t故答案为:2t-6;4-3t(2)点M表示的数为2t-6,且点C表示的数为-1,2t-6=-1,解得t=; 线 封 密 内 号学级年名姓 线 封 密 外 此时,点N表示的数为4-3t=4-=(3)点M表示的数为2t-6;点N表示的数为4-3t,MN=|2t-6-4+3t|=5|t-2|,AB=10,5|t-2|=5,解得t=1或t=3故当t=1或t=3时,【点睛】本题考查了数轴上两点间的距离,数轴上点表示有理数,绝对值的化简,正确理解两点间的距离公式,灵活进行绝对值的化简是解题的关键3、(1)(2)(3)(4)(5);【分析】(1)(2)(3)根据有理数的混合运算进求解即

18、可;(4)根据移项合并同类项解一元一次方程即可;(4)先去括号再合并同类项,再将的值代入求解即可(1)(2)(3)(4)解得 线 封 密 内 号学级年名姓 线 封 密 外 (5)当,时,原式【点睛】本题考查了有理数的混合运算,解一元一次方程,整式加减的化简求值,正确的计算是解题的关键4、(1)t;(2)yt26t(0t14);(3)t;(4)【分析】(1)通过证明CEMBMP,可得,即可求解;(2)利用锐角三角函数分别求出EH,HP,由三角形面积公式可求解;(3)由SEHPSEMP,列出等式可求解;(4)由对称性可得AEPBEP,由角平分线的性质可得PFPH,由面积关系可求解【详解】解:(1)

19、四边形ABCD是矩形AB=CD,BC=ADM是BC边的中点,CMBM6cm,DE=9cm,EC5cm,PMEM,PMBCME90,又BMPBPM90,BPMEMC,又BC90,CEMBMP,t;(2)四边形ABCD是矩形,D90,AE2AD2DE2,AD=12cm,DE=9cm,AEcm,ABCD,DEAEAB,sinDEAsinEAB,HPt, 线 封 密 内 号学级年名姓 线 封 密 外 AHt,HE15t,SEHPEHHP,y(15t)tt26t(0t14);(3)EP平分四边形PMEH的面积,SEHPSEMP,(15t)t12(514t)6(14t)65,解得:t1=,t2=0t14,

20、t;(4)如图2,连接BE,过点P作PFBE于F,点B关于PE的对称点,落在线段AE上,AEPBEP,又PHAE,PFBE,PFPHt,EC5cm,BC12cm,BEcm,SABESAEPSBEP,1412(1513)t,t【点睛】本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,轴对称的性质,锐角三角函数等知识,利用面积关系列出等式是本题的关键5、(1);(2),;(3),;,;,;,; ,;,【分析】(1)根据顶点的坐标,设抛物线的解析式为ya(x1)24,将点A(1,0)代入,求出a即可得出答案;(2)利用待定系数法求出直线BD解析式为y2x6,过点C作CP1BD,

21、交抛物线于点P1,再运用待定系数法求出直线CP1的解析式为y2x3,联立方程组即可求出P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,证明OCEGCF(ASA),运用待定系数法求出直线CF解析式为yx3,即可求出P2(,);(3)利用待定系数法求出直线AC解析式为y3x3,直线BC解析式为yx3,再分以下三种情况:当QMN是以NQ为斜边的等腰直角三角形时,当QMN是以MQ为斜边的等腰直角三角形时,当QMN是以MN为斜边的等腰直角三角形时,分别画出图形结合图形进行计算即可 线 封 密 内 号学级年名姓 线 封 密 外 (1)解:顶点D的坐标为(1,4),设抛物线的解析式为ya(x

22、1)24,将点A(1,0)代入,得0a(11)24,解得:a1,y(x1)24x22x3,该抛物线的解析式为yx22x3;(2)解:抛物线对称轴为直线x1,A(1,0),B(3,0),设直线BD解析式为ykx+e,B(3,0),D(1,4),解得:,直线BD解析式为y2x6,过点C作CP1BD,交抛物线于点P1,设直线CP1的解析式为y2x+d,将C(0,3)代入,得320+d,解得:d3,直线CP1的解析式为y2x3,结合抛物线yx22x3,可得x22x32x3,解得:x10(舍),x24,故P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,OBOC,BOCOBGOCG90,四

23、边形OBGC是正方形,设CP1与x轴交于点E,则2x30,解得:x,E(,0),在x轴下方作BCFBCE交BG于点F,四边形OBGC是正方形,OCCGBG3,COEG90,OCBGCB45,OCBBCEGCBBCF,即OCEGCF,OCEGCF(ASA),FGOE,BFBGFG3,F(3,),设直线CF解析式为yk1x+e1,C(0,3),F(3,), 线 封 密 内 号学级年名姓 线 封 密 外 ,解得:,直线CF解析式为yx3,结合抛物线yx22x3,可得x22x3x3,解得:x10(舍),x2,P2(,),综上所述,符合条件的P点坐标为:(4,5)或(,);(3)解:(3)设直线AC解析

24、式为ym1x+n1,直线BC解析式为ym2x+n2,A(1,0),C(0,3),解得:,直线AC解析式为y3x3,B(3,0),C(0,3),解得:,直线BC解析式为yx3,设M(t,t3),则N(t,t22t3),MN|t22t3(t3)|t23t|,当QMN是以NQ为斜边的等腰直角三角形时,此时NMQ90,MNMQ,如图2,MQx轴,Q(t,t3),|t23t|t(t)|,t23tt,解得:t0(舍)或t或t,;,;当QMN是以MQ为斜边的等腰直角三角形时,此时MNQ90,MNNQ,如图3,NQx轴, 线 封 密 内 号学级年名姓 线 封 密 外 Q(,t22t3),NQ|t|t2+t|,

25、|t23t|t2+t|,解得:t0(舍)或t5或t2,M3(5,2),Q3(5,12);M4(2,1),Q4(0,3);当QMN是以MN为斜边的等腰直角三角形时,此时MQN90,MQNQ,如图4,过点Q作QHMN于H,则MHHN,H(t,),Q(,),QH|t|t2+5t|,MQNQ,MN2QH,|t23t|2|t2+5t|,解得:t7或1,M5(7,4),Q5(7,18);M6(1,2),Q6(0,3);综上所述,点M及其对应点Q的坐标为:,;,;M3(5,2),Q3(5,12);M4(2,1),Q4(0,3);M5(7,4),Q5(7,18);M6(1,2),Q6(0,3) 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题是二次函数综合题,主要考查了待定系数法求一次函数和二次函数解析式,求一次函数与二次函数图象交点坐标,全等三角形判定和性质,正方形判定和性质,等腰直角三角形性质等,本题属于中考压轴题,综合性强,难度较大,熟练掌握待定系数法、等腰直角三角形性质等相关知识,运用数形结合思想、分类讨论思想是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁