《中考专题特训人教版初中数学七年级下册第十章数据的收集、整理与描述定向训练试题(无超纲).docx》由会员分享,可在线阅读,更多相关《中考专题特训人教版初中数学七年级下册第十章数据的收集、整理与描述定向训练试题(无超纲).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第十章数据的收集、整理与描述定向训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10那么频率是0.2的一组数据的范围是( )ABCD2、某医院病房护士对一位病人每小时测一次体温,要把这位病人一昼夜体温变化情况用统计图表示出来选用谁比较合适( )A条形统计图B折线统计图C扇形统计图D统计表3、学习了数据的收集、整理与表示之后,某小组同学对本校开设的,六门“自主选修
2、活动课”的选课情况比较感兴趣,他们以问卷的形式随机调查了若干名学生的选课情况(每人只能选一门课),并将调查结果绘制成如下统计图(不完整):选修课人数2030根据图表提供的信息,下列结论错误的是( )A这次被调查的学生人数为200人B被调查的学生中选课程的有55人C被调查的学生中选课程的人数为35人D被调查的学生中选课程的人数占20%4、下列调查中,最适合采用全面调查(普查)方式的是( )A检测生产的鞋底能承受的弯折次数B了解某批扫地机器人平均使用时长C选出短跑最快的学生参加全市比赛D了解某省初一学生周体育锻炼时长5、已知样本容量为30,样本频数直方图中各个小长方形的高的比依次是2:4 :3 :
3、1,则第二组的频数是()A14B12C9D86、下列调查适合作抽样调查的是( )A了解义乌电视台“同年哥讲新闻”栏目的收视率B了解某甲型H1N1确诊病人同机乘客的健康状况C了解某班每个学生家庭电脑的数量D“神七”载人飞船发射前对重要零部件的检查7、在“518世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟对于这个数据的收集与处理过程,下列说法正确的是()A调查的方式是普查B该街道约有18%的成年人吸烟C该街道只有820个成年人不吸烟D样本是180个吸烟的成年人8、在一个样本中,40个数据分别落在5个小组内,第1
4、,2,3,5小组的频数分别是6,5,15,7,则第4小组的频数是( )A7B8C9D109、下面调查中,适合采用普查旳是( )A对全国中学生心理健康现状的调查B对我市小学生视力情况的调查C对记者在线栏目收视率的调查D对某校七年(1)班同学身高情况的调查10、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况根据条形图提供的信息可知,两次测试最低分在第_ 次测试中,第_次测试较容易()A一,二B二,一C一,一D二,二二、填空题(5小题,每小题4分,共计20分)1、某班级有45名学生在期中考试学情分析中,分数段在7079分的频率为0.4,则该班级在这个分数段内的学生有 _人
5、2、为了估计新疆巴音布鲁克草原天鹅湖中天鹅的数量,先捕捉10只,分别作上记号后放飞;待它们完全混合于天鹅群后,重新捕捉40只天鹅,发现其中有2只有标记,据此可估算出该地区大约有天鹅_只3、小鸡孵化场孵化出一批小鸡,工人在其中50只小鸡上做记号后让这批小鸡充分跑散;后来再任意抓出200只小鸡,其中有记号的有5只,则这批小鸡大约有_只4、2021年6月6日是全国爱眼日,某校对七年级学生进行了视力监测,收集了部分学生的监测数据,并绘制成了频数分布直方图,从左至右每个小长方形的高的比为,其中第三组的频数为80,则共收集了_名学生的监测数据5、为了了解学生对未成年人保护法的知晓情况某学校随机选取了部分学
6、生进行调查,并将调查结果绘制成如图所示的扇形图若该学校共有学生1800人则可以估计其中对未成年人保护法非常清楚的学生约有 _人三、解答题(5小题,每小题10分,共计50分)1、某音像制品店某一天的销售的情况如图:(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?2、某校组织1000名学生参加“展示我美丽祖国 ”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表分数段频数百分比80x85a20%85x9080b90x956030%95x10020
7、根据以上图表提供的信息,解答下列问题:(1)写出表中a、b的数值:a= ,b= ;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数.3、某校为了解学生“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人必须报且只能报一项)进行调查下面是根据调查数据绘制的两幅不完整的统计图请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名学生;(2)扇形统计图中“艺术鉴赏”部分的圆心角是多少度;(3)选“数学思维”的人数比“科技制作”的人数多几分之几?
8、4、某校在八年级(1)班学生中开展对于“我国国家公祭日(12月13日)”知晓情况的问卷调查问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图请根据图中信息解答下列问题:(1)求该班参与问卷调查的人数 (2)把条形统计图补充完整 (3)求C类人数占参与问卷调查人数的百分比 (4)求扇形统计图中A类所对应扇形圆心角的度数5、某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局
9、中胜两局就获胜每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数这五个队完成所有比赛后得到如下的积分表第一组ABCDE获胜场数总积分A2:12:01:22:0x13B1:2m0:21:20yC0:2n1:22:12pD2:12:02:11:2312E0:22:11:22:129根据上表回答下列问题:(1)第一组一共进行了场比赛,A队的获胜场数x为;(2)当B队的总积分y6时,上表中m处应填,n处应填;(3)写出C队总积分p的所有可能值为:-参考答案-一、单选题1、D【解析】【分析】首先知共有20个数据,根据公式:频数=频率总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包
10、含样本中的数据有4个即可求解【详解】解:这组数据共20个,要使其频率为0.2,则频数为:200.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率总数”是解决本题的关键2、B【解析】【分析】根据各种统计图的特点解答即可【详解】解:根据统计图的特点可知:医院病房护士要统计一位病人一昼夜的体温情况,应选用折线统计图比较合适故选:B【点睛】
11、本题主要考查了条形统计图、折线统计图、扇形统计图的特点,条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系3、B【解析】【分析】先用D的人数除以D的人数所占的百分比,求出被调查的学生人数,再用被调查的学生人数乘以其他的所占的百分比,可判断A,B,C;最后用总人数减去A,B,C,D,F的人数,得到E的人数,可判断D,即可判断【详解】解:这次被调查的学生人数为 (人),故A正确,不符合题意;被调查的学生中选课程的有 (人),故B错误,符合题意;被调查的学生中选课程的人数为 (人),故C正确,不符合题意;被调查的学生中选
12、课程的人数为 (人),则被调查的学生中选课程的人数所占百分比为 ,故D正确,不符合题意故选:B【点睛】本题主要考查了统计表和扇形统计图,能从图形获取准确的信息是解题的关键4、C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】解:A、检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;B、了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;C、选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;D、了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;故选:C
13、【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查5、B【解析】【分析】根据样本频数直方图、样本容量的性质计算,即可得到答案【详解】根据题意,第二组的频数是: 故选:B【点睛】本题考查了统计调查的知识;解题的关键是熟练掌握样本容量、频数、频数直方图的性质,从而完成求解6、A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可【详解】解:A、了解义乌电视台
14、“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;故选:A【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查7、B【解析】【分析】由普查
15、得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似【详解】解:根据题意,随机调查1000个成年人,是属于抽样调查,故A选项错误;这1000个人中180人吸烟不代表本地区只有180个成年人吸烟,故C选项错误;样本是1000个成年人是否吸烟,故D选项错误;本地区约有18%的成年人吸烟是对的,故B选项正确故选:B【点睛】本题主要考查了样本估计总体思想以及抽样调查的定义,正确把握相关定义是解题关键8、A【解析】【分析】每组的数据个数就是每组的频数,40减去第1,2,3,5小组数据的个数就是第4组的频数【详解】解:第4小组的频数是40(65157)7,故选:A【点睛】本
16、题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和9、D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似【详解】解:A、对全国中学生心理健康现状的调查,调查范围广,适合抽样调查,故A错误;B、对我市食品合格情况的调查,无法进行普查,适合抽样调查,故B错误;C、对江苏卫视最强大脑收视率的调查,调查范围广,适合抽样调查,故C错误;D、对你所在班级同学身高情况的调查,适合普查,故D正确;故选:D【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活
17、选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查10、A【解析】【分析】根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易【详解】解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易故选A【点睛】条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键二、填空题1、18【解析】【分析】根据频数总数频率,直接求解即可【详解】依题意该班级在在7079分数段内的学生有(人)故答案为:18【点
18、睛】本题考查了根据描述求频数,掌握频数、频率、总数之间的关系是解题的关键2、200【解析】【分析】重新捕捉40只,数一数带有标记的天鹅有2只,说明在样本中,有标记的所占比例为,而在总体中,有标记的共有10只,估计所占比例,即可解答【详解】解:10200(只)故答案为:200【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可3、2000【解析】【分析】用做标记的小鸡数量除以有记号小鸡的数量占被抽查小鸡数量的比例即可得到答案【详解】解:这批小鸡的只数大约为(只,故答案为:2000【点睛】本题主要考查用样本估计总体,解题的关键是掌握从一个总体得到一个包含大量数据的样本,我们
19、很难从一个个数字中直接看出样本所包含的信息这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况4、200【解析】【分析】根据频率=频数除以总数进行计算即可【详解】解:(人),故答案为:【点睛】本题考查了频数分布直方图,掌握频率频数除以总数是解答本题的关键5、540【解析】【分析】先求出非常清楚所占的百分比,再乘以该校的总人数,即可得出答案【详解】解:根据题意得:(人答:可以估计其中对未成年人保护法非常清楚的学生约有540人故答案为:540【点睛】此题考查了用样本估计总体,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360的比三、解答题1、(
20、1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为;(2)应将0作为纵轴上销售量的起始值【分析】(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可(2)根据条形统计图的特点回答即可【详解】解:(1)从条形统计图看,民歌类唱片销售量为:80(张),流行歌曲唱片销售量为:120(张),民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值【点睛】本题考查的是条形统计图和扇形统计图的综合运用,
21、读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小2、(1)40,40%;(2)见解析;(3)100人.【分析】(1)首先根据的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b值;(2)用20除以样本容量即可求得的百分比,依据(1)中结论即可补全统计表及统计图;(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数【详解】解:(1)抽查的学生总数为:(人),;,故答案为:40;40%;(2)成绩在的学生人数所占百分比为:,故频数分布表为:分数段
22、频数百分比80x854020%85x908040%90x956030%95x1002010%频数分布直方图为:(3)该校参加此次活动获得一等奖的人数为:(人),答:估计该校参加此次活动获得一等奖的人数是100人【点睛】本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数学实际问题是解题关键3、(1)50人;(2)144度;(3)选“数学思维”的人数比“科技制作”的人数多三分之一【分析】(1)用阅读写作的人数除以其所占百分比即可得到总人数;(2)用360乘以艺术鉴赏的所占百分比即可得到答案;(3)先求出数学思维的人数,由此进行求解即可【详解】解
23、:(1)由题意得:调查的人数=5025%200人,答:得出人数为50人;(2),答:扇形统计图中“艺术鉴赏”部分的圆心角是144度;(3)数学思维的人数:20080305040人,科技制作的30人,(4030)30,答:选“数学思维”的人数比“科技制作”的人数多三分之一【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,解题的关键在于能够准确根据题意求出总人数4、(1)50人;(2)见解析;(3)20%;(4)108【分析】(1)利用样本估计总体,将D类型的人数与其所占的百分比相除即可;(2)用该班参与问卷调查的人数减去A、B、D类的人数即可;(3)用C类人数除以总调查人数再乘以100即可
24、;(4)求出A类人数占总调查人数的百分比,再乘以即可【详解】(1)2040%50(人),所以该班参与问卷调查的人数为50人;(2)C类人数为(人),补全条形统计图如下: (3),所以C类人数占参与问卷调查人数的20%;(4),所以A类所对应扇形圆心角的度数为108【点睛】本题考查了数据的收集与统计图,结合条形与扇形统计图准确的获取数据信息是解题的关键5、(1)10,3;(2)2:0;(3)9或10【分析】(1)利用公式即可求出比赛场次,根据比赛表格可得出A的获胜的场次即可(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种
25、得分为a,b,c,d,且abcd,根据E的总分可得:a+ b+2c9,根据D的总得分可得b+2c+d=12,根据A的总分可得:b+c+2d+13,解方程组,讨论整数解可得出a1,b2,c3,d=4;设m对应的积分为x,当y6时,b+x+a+b6,即2+x+1+26,解方程即可;(3)根据C队胜2场,分两种情况:当C、B的结果为2:0时,当C、B的结果为2:1时,分别把得分相加即可【详解】解:(1)10(场),第一组一共进行了10场比赛;每场比赛采用三局两胜制,A、B的结果为2:1,A获胜,A、C的结果为2:0,A获胜,A、E的结果为2:0,A获胜,A、D的结果为1:A负,A队共获胜场3常, x
26、=3,故答案为:10,3;(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且abcd,根据E的总分可得:a+ b+2c9,根据D的总得分可得b+2c+d=12,根据A的总分可得:b+c+2d+13,-得d-c=1,d=c+1代入得b+3c=11,c=,b=2,c=3,d=c+1=4,a=9-2-6=1,a1,b2,c3,d=4,设m对应的积分为x,当y6时,b+x+a+b6,即2+x+1+26,x1,m处应填0:2;B:C0:2,C:B2:0,n处应填2:0;(3)C队胜2场,分两种情况:当C、B的结果为2:0时,pa+d+c+b=1+4+3+210;当C、B的结果为2:1时,pa+2c+b=1+32+29;C队总积分p的所有可能值为9或10故答案为:9或10【点睛】本题考查比赛应用题,表格信息的收集与处理,四元方程组的解法,列代数式求值,分类讨论思想应用,认真阅读题目,读懂题意,是解题关键