《真题解析:2022年北京市大兴区中考数学备考真题模拟测评-卷(Ⅰ)(精选).docx》由会员分享,可在线阅读,更多相关《真题解析:2022年北京市大兴区中考数学备考真题模拟测评-卷(Ⅰ)(精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市大兴区中考数学备考真题模拟测评 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在边长为的正方形ABCD中,点E是对角线AC上一
2、点,且于点F,连接DE,当时,()A1BCD2、要使式子有意义,则()ABCD3、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mABCD2004、下列关于x的方程中,一定是一元二次方程的是()Aax2bx+c0B2ax(x1)2ax2+x5C(a2+1)x2x+60D(a+1)x2x+a05、下列命题中,真命题是()A同位角相等B有两条边对应相等的等腰三角形全等C互余的两个角都是锐角D相等的角是对顶角6、如图,在中,则的值为( )ABCD7、如图,E为正方形ABCD边AB上一动点(不与A重合),AB4,将DAE绕着点A逆时针旋转
3、90得到BAF,再将DAE沿直线DE折叠得到DME下列结论:连接AM,则AMFB;连接FE,当F,E,M共线时,AE44;连接EF,EC,FC,若FEC是等腰三角形,则AE4 线 封 密 内 号学级年名姓 线 封 密 外 4,其中正确的个数有()个A3B2C1D08、下列说法正确的是( )A不相交的两条直线叫做平行线B过一点有且仅有一条直线与已知直线垂直C平角是一条直线D过同一平面内三点中任意两点,只能画出3条直线9、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )A5或6B6或7C5或6或7D6或7或810、将,2,3按如图的方式排列,规定表示第m排左起第n个数,则与表示
4、的两个数之积是( )AB4CD6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若5525,则的补角为_2、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生_人3、用13米长的篱笆围成一个面积为20平方米的长方形场地,其中一边靠墙,若设垂直于墙的一边为x,则可列出的方程是 _;4、如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为时,梯子顶端靠在墙面上的点处,底端落在水平地面的点处,如果将梯子底端向墙面靠近,使梯子与地面所成角为,且,则梯子顶端上升了_米5、桌子上放有6枚正面
5、朝上的硬币,每次翻转其中的4枚,至少翻转_次能使所有硬币都反面朝上三、解答题(5小题,每小题10分,共计50分)1、如图,已知AE平分BAC交BC于点E,AF平分CAD交BC的延长线于点F,B64,EAF58,试判断AD与BC是否平行解:AE平分BAC,AF平分CAD(已知),BAC21,CAD( )又EAF1+258, 线 封 密 内 号学级年名姓 线 封 密 外 BADBAC+CAD2(1+2)(等式性质)又B64(已知),BAD+B( )2、已知关于x的方程x2+k0有实数根,求k的取值范围3、如图,中,于D,点E在AD上,且(1)求证:;(2)判断直线BE和AC的位置关系,并说明理由4
6、、深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同张红与李萍两位同学需要通过该地铁入口乘坐地铁(1)张红选择A安全检查口通过的概率是 ;(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率5、解方程:(x+2)(x3)4x+8;-参考答案-一、单选题1、C【分析】证明,则,计算的长,得,证明是等腰直角三角形,可得的长【详解】解:四边形是正方形,是等腰直角三角形,故选:C【点睛】本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型2、B 线 封
7、 密 内 号学级年名姓 线 封 密 外 【分析】根据分式有意义的条件,分母不为0,即可求得答案【详解】解:要使式子有意义,则故选B【点睛】本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键3、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可【详解】解:连接BD,如下图所示:与所对的弧都是 所对的弦为直径AD, 又,为等腰直角三角形,在中,由勾股定理可得: 故选:B【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形
8、,再用勾股定理求解边长,是解决本题的主要思路4、C【分析】根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可【详解】解:A当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不符合题意;B2ax(x-1)=2ax2+x-5整理后化为:-2ax-x+5=0,不是一元二次方程,故此选项不符合题意;C(a2+1)x2-x+6=0,是关于x的一元二次方程,故此选项符合题意;D当a=-1时,(a+1)x2-x+a=0不是一元二次方程,故此选项不符合题意故选:C【点睛】本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括
9、三点:是整式方 线 封 密 内 号学级年名姓 线 封 密 外 程,只含有一个未知数,所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a0)5、C【分析】根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可【详解】解:A、两直线平行,同位角相等,故本选项说法是假命题;B、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;C、互余的两个角都是锐角,本选项说法是真命题;D、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;故选:C【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,
10、错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理6、C【分析】由三角函数的定义可知sinA=,可设a=5k,c=13k,由勾股定理可求得b,再利用余弦的定义代入计算即可【详解】解:在直角三角形ABC中,C=90sinA=,可设a=5k,c=13k,由勾股定理可求得b=12k,cosA=,故选:C【点睛】本题主要考查了三角函数的定义,掌握正弦、余弦函数的定义是解题的关键7、A【分析】正确,如图1中,连接AM,延长DE交BF于J,想办法证明BFDJ,AMDJ即可;正确,如图2中,当F、E、M共线时,易证DEA=DEM=67.5,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM
11、=MJ=x,则EJ=JD=x,构建方程即可解决问题;正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题【详解】解:如下图,连接AM,延长DE交BF于J,四边形ABCD是正方形,AB=AD,DAE=BAF=90,由题意可得AE=AF,BAFDAE(SAS),ABF=ADE,ADE+AED=90,AED=BEJ, 线 封 密 内 号学级年名姓 线 封 密 外 BEJ+EBJ=90,BJE=90,DJBF,由翻折可知:EA=EM,DM=DA,DE垂直平分线段AM,BFAM,故正确;如下图,当F、E、M共线时,易证DEA=DEM=67.5,在MD上取一点
12、J,使得ME=MJ,连接EJ,则由题意可得M=90,MEJ=MJE=45,JED=JDE=22.5,EJ=JD,设AE=EM=MJ=x,则EJ=JD=x,则有x+x =4,x=44,AE=44,故正确;如下图,连接CF,当EF=CE时,设AE=AF=m,则在BCE中,有2m=4+(4-m)2,m=44或-44 (舍弃),AE=44,故正确;故选A【点睛】本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题8、B【分析】根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性
13、质依次判断【详解】解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;过一点有且仅有一条直线与已知直线垂直,故选项B正确;平角是角的两边在同一直线上的角,故选项C错误;过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;故选:B 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键9、C【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到【详解】解:如图,原来多边形的边数可能是5,6,7故选C【点睛】本题考查的是截去一个多边形的一个角,解此类
14、问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况10、A【分析】根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算【详解】解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,2,3四个数循环出现,表示的数是与表示的两个数之积是故选A【点睛】本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变
15、化规律是解决本题的关键二、填空题1、【分析】根据补角的定义计算【详解】解:的补角为,故答案为:【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键2、11或12 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+76(x-1)+1,且6(x-1)+35x+7,分别求出即可【详解】解:假设共有学生x人,根据题意得出:,解得:10x12因为x是正整数,所以符合条件的x的值是11或12,故答案为:11或12【点睛】此题主要考查了一元一次不等式组的应用,根据题意找出
16、不等关系得出不等式组是解决问题的关键3、x(13-2x)=20【分析】若设垂直于墙的一边长为x米,则平行于墙的一边长为(13-2x)米,根据长方形场地的面积为20平方米,即可得出关于x的一元二次方程,此题得解【详解】解:若设垂直于墙的一边长为x米,则平行于墙的一边长为(13-2x)米,依题意得:x(13-2x)=20故答案为:x(13-2x)=20【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键4、2【分析】标字母C、D、E如图,根据AB= 10米,可求EB=ABsin=10=6,根据CD=10米,可求DE=CD,在RtCDE中,CE=,求出BC=
17、CE-BE=8-6=2即可【详解】解:标字母C、D、E如图AB= 10米,EB=ABsin=10=6,CD=10米,DE=CD,在RtCDE中,CE=,BC=CE-BE=8-6=2,梯子顶端上升了2米故答案为2【点睛】本题考查锐角三角函数的应用,勾股定理,线段和差,掌握锐角三角函数的定义,勾股定理,线段和 线 封 密 内 号学级年名姓 线 封 密 外 差是解题关键5、3【分析】用“”表示正面朝上,用“”表示正面朝下,找出最少翻转次数能使杯口全部朝下的情况即可得答案【详解】用“”表示正面朝上,用“”表示正面朝下,开始时第一次第二次第三次至少翻转3次能使所有硬币都反面朝上故答案为:3【点睛】本题考
18、查了正负数的应用,根据朝上和朝下的两种状态对应正负号,尝试最少的次数满足题意是解题的关键三、解答题1、22;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行【分析】由AE平分BAC,AF平分CAD,利用角平分线的定义可得出BAC21,CAD22,结合EAF1+258可得出BAD116,由B64,BAD116,可得出BAD+B180,再利用“同旁内角互补,两直线平行”即可得出ADBC【详解】解:AE平分BAC,AF平分CAD(已知),BAC21,CAD22(角平分线的定义)又EAF1+258,BADBAC+CAD2(1+2)116(等式性质)又B64(已知),BAD+B180
19、ADBC(同旁内角互补,两直线平行)故答案为:22;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行【点睛】此题考查了角平分线的定义,角的计算,平行线的判定正确掌握线段、角、相交线与平行线的知识是解题的关键,还需掌握推理能力2、【分析】根据根的判别式的意义得到,还有被开方式,然后解不等式组即可【详解】解:根据题意得且,解得:【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的两个实数根;当时,方程有两个相等的两个实数根;当时,方程无实数根,本题关键还应考虑被开方式非负 线 封 密 内 号学级年名姓 线 封 密 外 3、(1)见详解;(2)BE
20、AC;理由见详解【分析】(1)先得到AD=BD,然后利用HL即可证明;(2)延长BE,交AC于点F,由(1)可知,然后得到,即可得到结论成立(1)解:于D,(HL);(2)解:BEAC;理由如下:延长BE,交AC于点F,如图:由(1)可知,BEAC;【点睛】本题考查了全等三角形的判定和性质,余角的性质,等腰三角形的判定和性质,解题的关键是掌握所学的知识,正确的找出全等的条件4、(1)(2)【分析】(1)根据概率公式求解即可;(2)根据题意先画出树状图得出所有等情况数和选择相同安全检查口通过的情况数,然后根据概率公式即可得出答案【小题1】解:(1)有AB、C三个闸口,张红选择A安全检查口通过的概率是,故答案为:;【小题2】根据题意画图如下: 线 封 密 内 号学级年名姓 线 封 密 外 共有9种等情况数,其中她俩选择相同安全检查口通过的有3种,则她俩选择相同安全检查口通过的概率是【点睛】本题考查列表法与树状图法,解题的关键是明确题意,正确画出树状图5、x1=7,x2=-2【分析】方程整理为一般形式,利用公式法求出解即可【详解】解:方程整理得:x2-5x-14=0,则a=1,b=-5,c=-14,b2-4ac=25+56=810,x=,解得:x1=7,x2=-2【点睛】此题考查了解一元二次方程-公式法,熟练掌握求根公式是解本题的关键