《2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线-平行线定向练习试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线-平行线定向练习试题(无超纲).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十三章相交线 平行线定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中,正确的是()A从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B互相垂直的两条直线不一
2、定相交C直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cmD过一点有且只有一条直线垂直于已知直线2、如图,已知1 = 40,2=40,3 = 140,则4的度数等于( )A40B36C44D1003、如图,已知,平分,则( )A32B60C58D644、一副直角三角板如图放置,点C在FD的延长线上,ABCF,FACB90,A60,则DBC的度数为( )A45B25C15D205、下列说法中正确的有()个两条直线被第三条直线所截,同位角相等;同一平面内,不相交的两条线段一定平行;过一点有且只有一条直线垂直于已知直线;经过直线外一点有且只有一条直线
3、与这条直线平行;从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离A1B2C3D46、如图,若要使与平行,则绕点至少旋转的度数是( )ABCD7、如图,直线,相交于点,平分,给出下列结论:当时,;为的平分线;若时,;其中正确的结论有( )A4个B3个C2个D1个8、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C,D处,DE与BF交于点G已知BGD26,则的度数是( )A77B64C26D879、如图,135,AOC90,点B,O,D在同一条直线上,则2的度数为 ( )A125B115C105D9510、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直
4、角边BC上,且FDAB,B30,则ADB的度数是()A95B105C115D125第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将一张长方形纸片按如图所示折叠,如果165,那么2等于_2、如图所示,过点P画直线a的平行线b的作法的依据是_3、如图,于点F,于点D,E是AC上一点,则图中互相平行的直线_4、如图,从人行横道线上的点P处过马路,下列线路中最短的是_5、如图,ABCDEF,若ABC125,CEF105,则BCE的度数为 _三、解答题(10小题,每小题5分,共计50分)1、如图,直线交于点,于点,且的度数是的4倍(1)求的度数;(2)求的度数2、如图,点O在直
5、线AB上,过点O作射线OC,OP平分AOC,ON平分POBAOC38,求CON的度数3、直线AB/CD,直线EF分别交AB、CD于点M、N,NP平分MND(1)如图1,若MR平分EMB,则MR与NP的位置关系是 (2)如图2,若MR平分AMN,则MR与NP有怎样的位置关系?请说明理由(3)如图3,若MR平分BMN,则MR与NP有怎样的位置关系?请说明理由4、如图,OAOB于点O,AOD:BOD7:2,点D、O、E在同一条直线上,OC平分BOE,求COD的度数5、如图,点A、B、C在85网格的格点上,每小方格是边长为1个单位长度的正方形请按要求画图,并回答问题:(1)延长线段AB到点D,使BDA
6、B;(2)过点C画CEAB,垂足为E;(3)点C到直线AB的距离是 个单位长度;(4)通过测量 ,并由此结论可猜想直线BC与AF的位置关系是 6、如图,ENC+CMG=180,ABCD(1)求证:2=3(2)若A=1+70,ACB=42,则B的大小为_7、如图,ABDG,1+2180(1)试说明:ADEF;(2)若DG是ADC的平分线,2142,求B的度数8、如图,已知,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由)理由:C,(已知) ,( ) ( )又,(已知) =180(等量代换) ,( )( ),(已知), 9、已知,直线AB、CD交于点O,EOAB,EOC
7、:BOD7:11(1)如图1,求DOE的度数;(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125的角10、已知:如图,中,点、分别在、上,交于点, ,(1)求证:;(2)若平分,求的度数-参考答案-一、单选题1、C【分析】根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线
8、AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解2、A【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出4的度数【详解】140,240,12,PQMN,4180340,故选:A【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行3、
9、D【分析】先根据平行线的性质(两直线平行,内错角相等),可得ADB=B,再利用角平分线的性质可得:ADE=2ADB=64,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案【详解】解:ADBC,B=32,ADB=B=32 DB平分ADE,ADE=2ADB=64,ADBC,DEC=ADE=64故选:D【点睛】题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系4、C【分析】直接利用三角板的特点,结合平行线的性质得出ABD=45,进而得出答案【详解】解:由题意可得:EDF=45,ABC=30,ABCF,ABD=EDF=45,DB
10、C=45-30=15故选:C【点睛】此题主要考查了平行线的性质,根据题意得出ABD的度数是解题关键5、A【分析】根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可【详解】互相平行的两条直线被第三条直线所截,同位角相等,故不正确;同一平面内,不相交的两条直线一定平行,故不正确;同一平面内,过一点有且只有一条直线垂直于已知直线,故不正确;经过直线外一点有且只有一条直线与这条直线平行,故正确从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故不正确故正确的有,共1个,故选A【点睛】本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是
11、解题的关键6、A【分析】根据“两直线平行,内错角相等”进行计算【详解】解:如图,l1l2,AOB=OBC=42,80-42=38,即l1绕点O至少旋转38度才能与l2平行故选:A【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到AOB=OBC=42是解题的关键,难度不大7、B【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可【详解】解:AOE=90,DOF=90,BOE=90=AOE=DOF,AOF+EOF=90,EOF+EOD=90,EOD+BOD=90,EOF=BOD,AOF=DOE,当AOF=50时,DOE=50;故正确;OB平分DOG,BOD=BOG,BOD=BOG
12、=EOF=AOC,故正确;,BOD=180-150=30,故正确;若为的平分线,则DOE=DOG,BOG+BOD=90-EOE,EOF=30,而无法确定,无法说明的正确性;故选:B【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键8、A【分析】本题首先根据BGD26,可以得出AEG=BGD26,由折叠可知=FED,由此即可求出=77【详解】解:由图可知: ADBCAEG=BGD26,即:GED=154,由折叠可知: =FED,=77故选:A【点睛】本题主要考察的是根据平行得性质进行角度的转化9、A【分析】利用互余角的概念与邻补角的概念解答即可【详解】解:135,AO
13、C90,BOCAOC155点B,O,D在同一条直线上,2180BOC125故选:A【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系准确使用邻补角的关系是解题的关键10、B【分析】由题意可知ADF45,则由平行线的性质可得B+BDF180,求得BDF150,从而可求ADB的度数【详解】解:由题意得ADF45,B30,B+BDF180,BDF180B150,ADBBDFADF105故选:B【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补二、填空题1、50【分析】根据平行线的性质计算即可;【详解】解:如图所示,由折叠可得,3165,CEG130
14、,ABCD,2180CEG18013050故答案为:50【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键2、内错角相等,两直线平行【分析】根据平行线的判定方法解决问题即可【详解】解:由作图可知,(内错角相等两直线平行),故答案为:内错角相等,两直线平行【点睛】本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型3、,【分析】由,可得再证明可得【详解】解: , 故答案为:【点睛】本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键.4、PC【分析】根据点到直线的距离,垂线段最短进行求解即可【详解】解:点到直线的距
15、离,垂线段最短,从人行横道线上的点P处过马路,线路最短的是PC,故答案为:PC【点睛】本题主要考查了点到直线的距离,解题的关键在于能够熟练掌握点到直线的距离垂线段最短5、50【分析】由ABCDEF,得到BCD=ABC=125,CEF+ECD=180,则ECD=180-CEF=75,由此即可得到答案【详解】解:ABCDEF,BCD=ABC=125,CEF+ECD=180,ECD=180-CEF=75,BCE=BCD-ECD=50,故答案为:50【点睛】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键三、解答题1、(1)AOD=36,BOD=144;(2)BOE =54【分析】(1)先由的
16、度数是的4倍,得到BOD=4AOD,再由邻补角互补得到AOD+BOD=180,由此求解即可;(2)根据垂线的定义可得DOE=90,则BOE=BOD-DOE=54【详解】解:(1)的度数是的4倍,BOD=4AOD,又AOD+BOD=180,5AOD=180,AOD=36,BOD=144;(2)OECD,DOE=90,BOE=BOD-DOE=54【点睛】本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键2、61.5【分析】由题意易得AOPCOPAOC19,然后根据邻补角可得BOP161,进而根据角的和差关系可求解【详解】解:OP平分AOC,AOC38,AOPCOPAOC3819,
17、BOP180AOP18019161,ON平分POBPONBOP16180.5,CONPONCOP80.51961.5【点睛】本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键3、(1)MR/NP;(2)MR/NP,理由见解析;(3)MRNP,理由见解析【分析】(1)根据ABCD,得出EMB=END,根据MR平分EMB,NP平分EBD,得出,可证EMR=ENP即可;(2)根据ABCD,可得AMN=END,根据MR平分AMN,NP平分EBD,可得,得出RMN=ENP即可;(3设MR,NP交于点Q,过点Q作QGAB,根据ABCD,可得BMN+E
18、ND=180,根据MR平分BMN,NP平分EBD,得出,计算两角和BMR+NPD=,根据GQAB,ABCD,得出BMQ=GQM,GQN=PND,得出MQN=GQM+GQN=BMQ+PND=90即可【详解】证明:(1)结论为MRNP如题图1ABCD,EMB=END,MR平分EMB,NP平分EBD,EMR=ENP,MRBP;故答案为MRBP;(2)结论为:MRNP如题图2,ABCD,AMN=END,MR平分AMN,NP平分EBD,RMN=ENP,MRNP;(3)结论为:MRNP如图,设MR,NP交于点Q,过点Q作QGAB,ABCD,BMN+END=180,MR平分BMN,NP平分EBD,BMR+N
19、PD=,GQAB,ABCD,GQCDAB,BMQ=GQM,GQN=PND,MQN=GQM+GQN=BMQ+PND=90,MRNP,【点睛】本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键4、100【分析】由垂直的定义结合两角的比值可求解BOD的度数,即可求得BOE的度数,再利用角平分线的定义可求得BOC的度数,进而可求解COD的度数【详解】解:OAOB,AOB90,AOD:BOD7:2,BODAOB20,BOE180BOD160OC平分BOE,BOCBOE80,CODBOC+BOD80+20100【点睛】本题考查了角度的计算,垂直的定义,
20、角平分线的定义,结合垂直的定义和两角的比值求出BOD的度数是解题的关键5、(1)见解析;(2)见解析;(3)2;(4),平行【分析】(1)根据网格的特点和题意,延长到,使;(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,(3)点C到直线AB的距离即的长,网格的特点即可数出的长;(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度【详解】解:(1)(2)如图所示, (3)由网格可知即点C到直线AB的距离是个单位长度故答案为:2(4)通过测量,可知故答案为:,平行【点睛】本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是
21、解题的关键6、(1)见解析;(2)34【分析】(1)根据对顶角相等可得出ENC+FMN=180,根据平行线的判定可得FGED,由平行线的性质可得2=D,3=D,等量代换即可得出结论;(2)由平行线的性质A+ACD=180,结合已知可得1+70+1+42=180,可求得1=34,根据平行线的性质即可求解【详解】(1)证明:ENC+CMG=180,CMG=FMN,ENC+FMN=180,FGED,2=D,ABCD,3=D,2=3;(2)解:ABCD,A+ACD=180,A=1+70,ACB=42,1+70+1+42=180,1=34,ABCD,B=1=34故答案为:34【点睛】本题主要考查了平行线
22、的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用7、(1)见解析;(2)B38【分析】(1)由ABDG,得到BAD1,再由1+2180,得到BAD+2180,由此即可证明;(2)先求出138,由DG是ADC的平分线,得到CDG138,再由ABDG,即可得到BCDG38【详解】(1)ABDG,BAD1,1+2180,BAD+2180.ADEF . (2)1+2180且2142,138,DG是ADC的平分线,CDG138,ABDG,BCDG38【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键8、GD;AC;同位角相等,两直线平行
23、;两直线平行,内错角相等;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC【分析】结合图形,根据平行线的判定和性质逐一进行填空即可【详解】解:,已知,同位角相等,两直线平行两直线平行,内错角相等又,(已知)(等量代换),同旁内角互补,两直线平行)(两直线平行,同位角相等),(已知) ,【点睛】本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用9、(1)145;(2)图中度数为125的角有:EOM,BOC,AOD【分析】(1)由EOAB,得到BOE=90,则COE+BOD=90,再由EOC:BOD7:11,求出COE=35,
24、BOD=55,则DOE=BOD+BOE=145;(2)由MNCD,得到COM=90,则EOM=COE+COM=125,再由BOD=55,得到BOC=180-BOD=125,则AOD=BOC=125【详解】解:(1)EOAB,BOE=90,COE+BOD=90,EOC:BOD7:11,COE=35,BOD=55,DOE=BOD+BOE=145;(2)MNCD,COM=90,EOM=COE+COM=125,BOD=55,BOC=180-BOD=125,AOD=BOC=125,图中度数为125的角有:EOM,BOC,AOD【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握
25、垂线的定义10、(1)见解析;(2)72【分析】(1)等量代换得出3DFE,平行线的判定得出EF/AB,可以推出ADEB,即可判断结论;(2)由平分线的定义得出ADEEDCB,由平角的定义列出关于5+ADE+EDC180,求出B的度数,即可得出ADC的度数,由EF/AB即可求出2的度数【详解】解:(1),2+DFE180,3DFE,EF/AB,ADE1,又,ADEB,DE/BC,(2)平分,ADEEDC,DE/BC,ADEB,5+ADE+EDC180,解得:,ADC2B72,EF/AB,2ADC18010872,【点睛】本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型