2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步训练试题(含解析).docx

上传人:知****量 文档编号:28187447 上传时间:2022-07-26 格式:DOCX 页数:24 大小:678.32KB
返回 下载 相关 举报
2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步训练试题(含解析).docx_第1页
第1页 / 共24页
2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步训练试题(含解析).docx_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步训练试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题同步训练试题(含解析).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第二十六章 综合运用数学知识解决实际问题同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A23B34C45D562、已知,

2、设则M,N,P,Q四数中最大的是( )AMBNCPDQ3、设m,n是正整数,满足,给出以下四个结论:m,n都不等于1;m,n都不等于2:m,n都大于1;m,n至少有一个等于1其中正确的结论是( )ABCD4、小明有许多个可供贴用的数字,但只有个可供贴用的数字,他用这些数字将他的剪贴簿的各页编号,最多他能编贴到哪一页?( )A41B99C112D1195、鄞州区有两大美丽的公园,分别是鄞州公园和鄞州湿地公园,两大公园的占地面积约达800000平方米,若按比例尺1:2000缩小后的面积大约相当于()A一个篮球场的面积B一个乒乓球台的面积C数学课本封面的面积D宁波日报一个版面的面积6、某景区乘坐缆车

3、观光游览的价目表如下:缆车类型两人车(限乘2人)四人车(限乘4人)六人车(限乘6人)往返费用80元120元150元某班20名同学一起来该景区游玩,都想坐缆车观光游览,且每辆缆车必须坐满,那么他们的费用最低为()A530元B540元C580元D590元7、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35,再往前走3米站在C处,看路灯顶端O的仰角为65,则路灯顶端O到地面的距离约为(已知sin350.6,cos350.8,tan350.7,sin650.9,cos650.4,tan652.1)()A3.2米B3.9米C4.7米D5.4米

4、8、某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校如图描述了他上学的情景,下列说法中错误的是()A自行车发生故障时离家距离为1000米B学校离家的距离为2000米C到达学校时共用时间20分钟D修车时间为15分钟9、,则( )AB0C32D6410、如图一是一个解环游戏,一条链子由14个铁圈连在一起,要使这14个铁圈环环都脱离,例如图二只需要解开一个圈即可环环都脱离要解开图一的链子至少要解开几个圈呢?()A5个B6个C7个D8个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了更好的开展线上学习,李老师打算选择一款适合网上授课的

5、软件,他让年级同学在使用过A、B、C三款软件后进行评分,统计结果如下:五星四星三星两星一星合计A52301332100B49361041100C35302564100(说明:学生对于网上授课软件的综合评价从高到低,依次为五星、四星、三星、二星和一星)李老师选择_(填“A”、“B”或“C”)款网上授课软件,能更好的开展线上学习(即评价不低于四星)的可能性最大2、某人的身份证是 469003200712018617 ,则这个人出生的年、月、日是_3、定义一种新运算“”规则如下:对于两个有理数,若,则_4、多项式能被整除,则_,_5、方程的解为_三、解答题(5小题,每小题10分,共计50分)1、请仅

6、用无刻度的直尺在下列图1和图2中按要求画菱形(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BEDE),以AE为边画一个菱形2、某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局中胜两局就获胜每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数这五个队完成所有比赛后得到如下的积分表第一组ABCDE获胜场数总积分A2:12:01:22:0x13B1:2m0:21:20yC0:2n1:22:12pD2:12:02:1

7、1:2312E0:22:11:22:129根据上表回答下列问题:(1)第一组一共进行了场比赛,A队的获胜场数x为;(2)当B队的总积分y6时,上表中m处应填,n处应填;(3)写出C队总积分p的所有可能值为:3、一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?4、腾飞中学在教学楼前新建了一座“腾飞”雕塑为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30,底

8、部B点的俯角为45,小华在五楼找到一点D,利用三角板测得A点的俯角为60(如图所示)若已知CD为10米,请求出雕塑AB的高度(结果精确到0.1米,参考数据1.73)5、数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用探究一:求不等式的解集(1)探究的几何意义如图,在以O为原点的数轴上,设点A对应点的数为,由绝对值的定义可知,点A与O的距离为,可记为:AO=将线段AO向右平移一个单位,得到线段AB,此时点A对应的数为,点B的对应数是1,因为AB= AO,所以AB=因此,的几何意义可以理解为数轴上所

9、对应的点A与1所对应的点B之间的距离AB (2)求方程=2的解因为数轴上3与所对应的点与1所对应的点之间的距离都为2,所以方程的解为(3)求不等式的解集因为表示数轴上所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点所对应的数的范围请在图的数轴上表示的解集,并写出这个解集探究二:探究的几何意义(1)探究的几何意义如图,在直角坐标系中,设点M的坐标为,过M作MPx轴于P,作MQy轴于Q,则点P点坐标(),Q点坐标(),|OP|=,|OQ|=,在RtOPM中,PMOQy,则因此的几何意义可以理解为点M与原点O(0,0)之间的距离OM(2)探究的几何意义如图,在直角坐标

10、系中,设点 A的坐标为,由探究(二)(1)可知,AO=,将线段 AO先向右平移1个单位,再向上平移5个单位,得到线段AB,此时A的坐标为(),点B的坐标为(1,5)因为AB= AO,所以 AB=,因此的几何意义可以理解为点A()与点B(1,5)之间的距离(3)探究的几何意义请仿照探究二(2)的方法,在图中画出图形,并写出探究过程(4)的几何意义可以理解为:_.拓展应用:(1)+的几何意义可以理解为:点A与点E的距离与点AA与点F_(填写坐标)的距离之和(2)+的最小值为_(直接写出结果)-参考答案-一、单选题1、B【分析】用计算器计算得3.464101615得出答案【详解】解:使用计算器计算得

11、,4sin603.464101615,故选:B【点睛】本题考查计算器的使用,正确地操作和计算是得出正确答案的前提2、D【分析】根据题意,再利用作差法比较与即可.【详解】解:,恒成立,最大,即Q最大,故选:D.【点睛】本题考查了代数式的大小比较,解题的关键是掌握作差法.3、D【分析】利用如果当m1,n2,分析得出满足mnmn,即可得出错误,由mnmn,进行移项变形得出(m1)(n1)1,即可得出答案【详解】解:如果当m1,n2,满足mnmn,所以:m,n都不等于1;m,n都不等于2;m,n都大于1;这些说法都不可能故错误;再来证明第四个命题:证明:mnmn,mnmn0,mnmn(m1)(n1)1

12、,(m1)(n1)10,即(m1)(n1)1m,n是正整数,(m1)(n1)0,故m和n中至少有一个为1故答案m,n至少有一个等于1正确,故选:D【点睛】此题主要考查了整数问题的综合应用,利用特殊值法解决问题是数学中常用方法,同学们应学会这种方法4、A【解析】【分析】首先确定14个2从小到大构成的数即可求解【详解】由于只有13个可供贴用的数字2,于是含数字2的数有以下13个:2,12,20,21,22,23,24,25,26,27,28,29,32由于小明有许多个可供贴用的数字0,1,3,4,5,6,7,8,9,所以还可继续编贴到33,34,35,36,37,38,39,40,41所以最多他能

13、编贴到41页故选A【点睛】本题是一道探索性实际问题,考查了同学们探索发现和应用数学知识解决实际问题的能力,有利于培养发展思维能力关键是得到第14个2所在的具体数5、D【分析】求按比例尺缩小后面积,再根据实际判断.【详解】依题意得,缩小后面积是:800000平方米20002=0.2平方米,大约是宁波日报一个版面的面积.故选D【点睛】本题考核知识点:比例尺. 解题关键点:理解比例尺的意义.6、A【分析】由题意可知六人车每个人的价格最低,故费用最低时,六人车三辆,两人车一辆,以此进行分析计算即可.【详解】解:由表格可知,六人车每个人的价格最低,故费用最低时,六人车三辆,两人车一辆,1503+8045

14、0+80530(元),即最低费用为530元故选:A【点睛】本题考查有理数的混合运算,解答本题的关键是明确题意,列出相应的算式7、C【分析】过点O作OEAC于点F,延长BD交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65,OFxtan65,BF3+x,tan35,OF(3+x)tan35,2.1x0.7(3+x),x1.5,OF1.52.13.15,OE3.15+1.54.65,故选:C【点睛】本题考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键

15、8、D【分析】观察图象,明确每一段小明行驶的路程、时间,作出判断.【详解】、自行车发生故障时离家距离为米,正确;、学校离家的距离为米,正确;、到达学校时共用时间分钟,正确;、由图可知,修车时间为分钟,可知错误.故选:.【点睛】此题考查了学生从图象中获取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.9、C【分析】将x=1代入可知a12+a11+a10+a1x+a0的值,将x=-1代入可求得a12-a11+a10-a9+-a1x+a0的值,然后将两式相加可求得a12+a10+a8+a6+a4+a2+a0的值,最后将x=0代入可求得a0的值【详解】解:将x=1代

16、入得:a12+a11+a10+a1x+a0=64,将x=-1代入得:a12-a11+a10-a9+-a1x+a0=0,+得:2(a12+a10+a8+a6+a4+a2+a0)=64a12+a10+a8+a6+a4+a2+a0=32将x=0代入得:a0=64a12+a10+a8+a6+a4+a2=32-64=-32故选:C【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键10、C【解析】【分析】通过观察图形,找到铁圈的方法:解开1、3、5、13个环即可.【详解】只要解开1、3、5、13个环即可环环都脱离,7所以只要解开7个环即可环环都脱离故选:C【点睛】本题考查了找规律,解题的关键

17、是能够看出解开奇数个环即可环环脱离.二、填空题1、B【分析】分别求出三款软件评价不低于四星的比例,然后再进行比较即可得到结论【详解】A软件的综合评价不低于四星的比例为:(52+30)100=0.82;B软件的综合评价不低于四星的比例为:(49+36)100=0.85;C软件的综合评价不低于四星的比例为:(35+30)100=0.65;0.650.820.85故李老师选择B款网上授课软件,能更好的开展线上学习的可能性最大故答案为:B【点睛】考查了基本概率的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比2、2007年12月01日【分析】根据题意可直接进行求解【详解】解:由

18、某人的身份证是 469003200712018617 ,则这个人出生的年、月、日是2007年12月01日;故答案为2007年12月01日【点睛】本题主要考查有理数的意义,熟练掌握有理数的意义是解题的关键3、【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得:,故答案为【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 4、-11 4 【分析】设多项式和多项式的商为,通过和乘积与原多项式各项系数对比可求出b和c的值,从

19、而得到m和n.【详解】解:多项式能被整除,设()()=,则()()=,可得,解得:,m=-3-2c=-11,n=c=4,故答案为:-11,4.【点睛】本题考查了多项式的乘除法,解题的关键是掌握运算法则.5、或或【分析】这种类型方程的求解,通常的解法是将方程两边同时平方,整理后再次平方,其计算量相对较大.观察方程的形式,可以将方程变形后求解方程.【详解】解: 根据题意可设:,两式平方后相减,整理得6x十4=2(3x十2)d,当3x+20,所以d=1,将d=1代入式,解得x1 =,x2=,将x1+x2代入式检验,符合题意.所以,x1 =,x2=为原方程的根.当3x+2=0即 时,代入原式满足等式关

20、系.综上,方程的根是或或【点睛】本题巧妙地运用了数学问题转化为多个简单的问题进行求解.三、解答题1、(1)作图见解析;(2)作图见解析.【详解】(1)如图所示:四边形EFGH即为所求的菱形;(2)如图所示:四边形AECF即为所求的菱形2、(1)10,3;(2)2:0;(3)9或10【分析】(1)利用公式即可求出比赛场次,根据比赛表格可得出A的获胜的场次即可(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且abcd,根据E的总分可得:a+ b+2c9,根据D的总得分可得b+2c+d=12,根据A的总

21、分可得:b+c+2d+13,解方程组,讨论整数解可得出a1,b2,c3,d=4;设m对应的积分为x,当y6时,b+x+a+b6,即2+x+1+26,解方程即可;(3)根据C队胜2场,分两种情况:当C、B的结果为2:0时,当C、B的结果为2:1时,分别把得分相加即可【详解】解:(1)10(场),第一组一共进行了10场比赛;每场比赛采用三局两胜制,A、B的结果为2:1,A获胜,A、C的结果为2:0,A获胜,A、E的结果为2:0,A获胜,A、D的结果为1:A负,A队共获胜场3常, x=3,故答案为:10,3;(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都

22、会得到一个正整数积分,设以上四种得分为a,b,c,d,且abcd,根据E的总分可得:a+ b+2c9,根据D的总得分可得b+2c+d=12,根据A的总分可得:b+c+2d+13,-得d-c=1,d=c+1代入得b+3c=11,c=,b=2,c=3,d=c+1=4,a=9-2-6=1,a1,b2,c3,d=4,设m对应的积分为x,当y6时,b+x+a+b6,即2+x+1+26,x1,m处应填0:2;B:C0:2,C:B2:0,n处应填2:0;(3)C队胜2场,分两种情况:当C、B的结果为2:0时,pa+d+c+b=1+4+3+210;当C、B的结果为2:1时,pa+2c+b=1+32+29;C队

23、总积分p的所有可能值为9或10故答案为:9或10【点睛】本题考查比赛应用题,表格信息的收集与处理,四元方程组的解法,列代数式求值,分类讨论思想应用,认真阅读题目,读懂题意,是解题关键3、(1)该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)甲、丙两地相距千米【分析】(1)设该轮船在静水中的速度是千米/小时,水流速度是千米/小时,根据路程速度时间,即可得出关于的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距千米,则乙、丙两地相距千米,根据时间路程速度,即可得出关于的一元一次方程,解之即可得出结论【详解】(1)设该轮船在静水中的速度是千米/小时,水流速度是千米/小时,

24、依题意,得:,解得:,答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)设甲、丙两地相距千米,则乙、丙两地相距千米,依题意,得:,解得:,答:甲、丙两地相距千米【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程4、雕塑AB的高度约为6.8米【分析】利用题目中的仰俯角将其转化为题目直角三角形的内角,分别在RtACE中和RtBCE中求得AE和BE的长,两者相加即为雕塑的高【详解】解:过点C作CEAB于ED906030,ACD903060,CAD180306090CD1

25、0,ACCD5在RtACE中,AEAC5sin 30,CEAC5cos 30,在RtBCE中,BCE45,BE=CE =6.8(米)雕塑AB的高度约为6.8米【点睛】此题主要考查了仰角和俯角的应用,本题要求学生借助仰关系构造直角三角形,并结合图形利用三角函数解直角三角形5、探究一(3) 解集为:探究二(3)()拓展应用(1)() (2)5【详解】试题分析:探究一(3):的解集就是数轴上所对应的点与1所对应的点之间的距离小于2的点所对应的数,利用数轴可知探究二(3):根据题目信息,的几何意义可以理解为点A()与点B()之间的距离拓展应用:根据题目信息知是与点F()的距离之和+表示点A与点E的距离与点A与点F()的距离之和最小值为E与点F()的距离5.试题解析:探究一(3) 解集为:探究二(3)如图,在直角坐标系中,设点 A的坐标为,由探究(二)(1)可知, AO=,将线段 AO先向左平移3个单位,再向下平移4个单位,得到线段AB,此时A的坐标为(),点B的坐标为()因为AB= AO,所以 AB=,因此的几何意义可以理解为点A()与点B()之间的距离拓展应用(1)() (2)5考点:信息阅读题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁