《模拟真题:最新中考数学第二次模拟试题(含答案详解).docx》由会员分享,可在线阅读,更多相关《模拟真题:最新中考数学第二次模拟试题(含答案详解).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 最新中考数学第二次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超
2、过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式()A10x5(20x)125B10x+5(20x)125C10x+5(20x)125D10x5(20x)1252、如图所示,由A到B有、三条路线,最短的路线选的理由是( )A两点确定一条直线B经过一点有无数条直线C两点之间,线段最短D一条线段等于已知线段3、有下列说法:两条不相交的直线叫平行线;同一平面内,过一点有且只有一条直线与已知直线垂直;两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;有公共顶点的两个角是对顶角其中说法正确的个数是( )A1B2C3D44、已知和是同类项,那么的值是( )A3
3、B4C5D65、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:;抛物线与轴的另一个交点的坐标为;方程有两个不相等的实数根其中正确的个数为( )A个B个C个D个6、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mABCD2007、如图,将ABC绕点C按逆时针方向旋转至DEC,使点D落在BC的延长线上已知A32,B30,则ACE的大小是( ) 线 封 密 内 号学级年名姓 线 封 密 外 A63B58C54D568、若x1是关于x的一元二次方程x2ax2b0的解,则4b2a的值为( )A2B1C1D2
4、9、下列式中,与是同类二次根式的是()ABCD10、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于()A1B1C2D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、定义新运算“*”;其规则为a*b,则方程(2*2)(4*x)8的解为x_2、近几年,就业形式严峻,考研人数持续增加,官方统计显示2022年考研报名人数为4570000人,创下了历史新高,将数据“4570000”用科学记数法表示为_3、如图,AB,CD是的直径,弦,所对的圆心角为40,则的度数为_4、深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10
5、个,这些球除颜色外都相同凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个则该纸箱中红球的数量约有 _个5、等边的边长为2,P,Q分别是边AB,BC上的点,连结AQ,CP交于点O以下结论:若,则;若,则;若点P和点Q分别从点A和点C同时出发,以相同的速度向点B运动(到达点B就停止),则点O经过的路径长为,其中正确的是_(序号)三、解答题(5小题,每小题10分,共计50分)1、如图,点C、D分别在射线OA、OB上,且满足将线段DC绕点D顺时针旋转60,得到线段DE过点E作OC的平行线
6、,交OB反向延长线于点F(1)根据题意完成作图;(2)猜想DF的长并证明;(3)若点M在射线OC上,且满足,直接写出线段ME的最小值2、(数学认识)数学是研究数量关系的一门学科,在初中几何学习的历程中,常常把角与角的数量关系转化为边与边的数量关系,把边与边的数量关系转化为角与角的数量关系 (构造模型)(1)如图,已知ABC,在直线BC上用直尺与圆规作点D,使得ADBACB(不写作法,保留作图痕迹) 线 封 密 内 号学级年名姓 线 封 密 外 (应用模型)已知ABC是O的内接三角形,O的半径为r,ABC的周长为c(2)如图,若r5,AB8,求c的取值范围(3)如图,已知线段MN,AB是O一条定
7、长的弦,用直尺与圆规作点C,使得cMN(不写作法,保留作图痕迹)3、为了解班级学生参加课后服务的学习效果,何老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)此次调查的总人数为_;(2)扇形统计图中“不达标”对应的圆心角度数是_;(3)请将条形统计图补充完整;(4)为了共同进步,何老师准备从被调查的A类和D类学生中各随机抽取一位同学进行“一帮一”互助学习请用画树状图或列表的方法求出所选两位同学恰好是相同性别的概率4、在平面直角坐标系xOy中,抛物线上有两点和点
8、(1)用等式表示a与b之间的数量关系,并求抛物线的对称轴;(2)当时,结合函数图象,求a的取值范围5、解方程:(1)3(2x3)=18(32x) (2)-参考答案- 线 封 密 内 号学级年名姓 线 封 密 外 一、单选题1、D【分析】根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题【详解】解:由题意可得,10x-5(20-x)125,故选:D【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式2、C【分析】根据线段的性质进行解答即可【详解】解:最短的路线选的理由是两点之间,线段最短,故选:C【点睛】本题主要考查了线段
9、的性质,解题的关键是掌握两点之间,线段最短3、A【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断【详解】同一平面内不相交的两条直线叫做平行线,故说法错误;说法正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法错误;根据对顶角的定义知,说法错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键4、C【分析】把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决【详解】由题意知:n=2,m=3,则m+n=3+2=5故选:C【点
10、睛】本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键5、C【分析】根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断【详解】解:如图,开口向上,得,得,抛物线与轴交于负半轴,即,故错误; 线 封 密 内 号学级年名姓 线 封 密 外 如图,抛物线与轴有两个交点,则;故正确;由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,故正确;如图所示,当时,根的个数为与图象的交点个数,有两个交点,即有两个根,故正确;综上所述,正确的结论有3个故选:C【点睛】主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求
11、与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用6、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可【详解】解:连接BD,如下图所示:与所对的弧都是 所对的弦为直径AD, 又,为等腰直角三角形,在中,由勾股定理可得: 故选:B【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路7、C【分析】先根据三角形外角的性质求出ACD=63,再由ABC绕点C按逆时针方向旋转至DEC,得到 线 封
12、密 内 号学级年名姓 线 封 密 外 ABCDEC,证明BCE=ACD,利用平角为180即可解答【详解】解:A=33,B=30,ACD=A+B=33+30=63,ABC绕点C按逆时针方向旋转至DEC,ABCDEC,ACB=DCE,BCE=ACD,BCE=63,ACE=180-ACD-BCE=180-63-63=54故选:C【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到ABCDEC8、D【分析】将x=1代入原方程即可求出答案【详解】解:将x=1代入原方程可得:1+a-2b=0,a-2b=-1,原式=-2(a-2b)=2,故选:D【点睛】本题考查一元二次方程,解题的关键
13、是正确理解一元二次方程的解的概念,本题属于基础题型9、A【分析】先根据二次根式的性质化成最简二次根式,再看看被开方数是否相同即可【详解】解:A、,即化成最简二次根式后被开方数相同(都是5),所以是同类二次根式,故本选项符合题意;B、最简二次根式和的被开方数不相同,所以不是同类二次根式,故本选项不符合题意;C、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;D、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;故选:A【点睛】本题考查了二次根式的性质与化简和同类二次根式的定义,能熟记同类二次根式的定义是解此题的关键10、B【分析】关于
14、x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:与点关于y轴对称,故选:B【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键二、填空题1、【分析】先根据已知新运算求出求出2*2=3,4*x=2+x,根据(2*2)(4*x)=8求出答案即可【详解】解:2*2= =3,4*x=2+x,又(2*2)(4*x)=8(2*2)(4*x)=3(x+2)=8,解得:x=,故答案为:【
15、点睛】本题考查了有理数的混合运算和解一元一次方程,能灵活运用新运算进行计算是解此题的关键2、4.57106【分析】将一个数表示成a10n,1a10,n是正整数的形式,叫做科学记数法,根据此定义即可得出答案【详解】解:根据科学记数法的定义,4570000=4.57106,故答案为:4.57106【点睛】本题主要考查科学记数法的概念,关键是要牢记科学记数法的形式3、70【分析】连接OE,由弧CE的所对的圆心角度数为40,得到COE=40,根据等腰三角形的性质和三角形的内角和定理可求出OCE,根据平行线的性质即可得到AOC的度数【详解】解:连接OE,如图,弧CE所对的圆心角度数为40,COE=40,
16、OC=OE,OCE=OEC,OCE=(180-40)2=70,CE/AB, 线 封 密 内 号学级年名姓 线 封 密 外 AOC=OCE=70,故答案为:70【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,弧与圆心角的关系,平行线的性质,求出COE=40是解题的关键4、3【分析】先求出得到吉祥物的频率,再设纸箱中红球的数量为x个,根据题意列出方程,解之即可【详解】解:由题意可得:参与该游戏可免费得到吉祥物的频率为=,设纸箱中红球的数量为x个, 则,解得:x=3,所以估计纸箱中红球的数量约为3个,故答案为:3【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定
17、位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率5、【分析】根据全等三角形的性质可得BAQACP,再由三角形的外角性质即可求解;第结论有两种情况,准确画出图之后再来计算和判断;要先判断判断轨迹(通过对称性或者全等)在来计算路径长【详解】解:为等边三角形, , , , , , ,故正确;当时可分两种情况,第一种,如所证时,且 时, ,第二种如图,时,若 时,则大小无法确定, 线 封 密 内 号学级年名姓 线 封 密 外 故错误;由题意知 ,为等边三角形, , ,点O运动轨迹为AC边上中线,的边长为2,AC上边中线为
18、,点O经过的路径长为,故正确;故答案为:【点睛】此题是三角形综合题,考查了等边三角形的性质、全等三角形的判定与性质、三角形的外角性质等知识的综合应用本题综合性强,熟练掌握等边三角形的性质是解题关键三、解答题1、(1)见解析;(2),证明见解析;(3)【分析】(1)根据题意作出图形即可;(2)在OB上截取,连接CP、CE、OE,得出、是等边三角形,根据SAS证明,由全等三角形的性质和平行线的性质得是等边三角形,可得即可;(3)过点M作,连接,作等边,即当点E到点时,ME得最小值,由得,故可求出、,即可得出ME的最小值【详解】(1)根据题意作图如下所示:(2),证明如下: 线 封 密 内 号学级年
19、名姓 线 封 密 外 如图,在OB上截取,连接CP、CE、OE,,是等边三角形,是等边三角形,在和中,是等边三角形,(3)如图,过点M作,连接,作等边,即当点E到点时,ME得最小值,故ME的最小值为【点睛】本题考查全等三角形的判定与性质,等边三角形的判定与性质,掌握相关知识点的应用是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 2、(1)见解析;(2)16c88;(3)见解析【分析】(1)可找到两个这样的点:当点D在BC的延长线上时:以点C为圆心,AC长为半径,交BC的延长线于点D,连接AD,即为所求;当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点,连接,
20、即为所求;两种情况均可利用等腰三角形的性质及三角形外角的性质证明;(2)考虑最极端的情况:当C与A或B重合时,则,可得此时,根据题意可得,当点C为优弧AB的中点时,连接AC并延长至D,使得,利用等腰三角形的性质及三角形外角性质可得点D的运动轨迹为一个圆,点C为优弧AB的中点时,点C即为外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,根据垂径定理及勾股定理可得,当AD为直径时,c最大即可得;(3)依照(1)(2)的做法,方法一:第1步:作AB的垂直平分线交O于点P;第2步:以点P为圆心,PA为半径作P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画
21、弧交P于点E;第5步:连接AE交O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得;第2步:作的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交ABE的外接圆于点F;第5步:连接AF交O于点C,即为所求【详解】(1)如图所示:当点D在BC的延长线上时:以点C为圆心,AC长为半径,交BC的延长线于点D,连接AD,即为所求;当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点,连接,即为所求;证明:,;同理可证明;(2)当C与A或B重合时,则, 线 封 密 内 号学级年名姓 线 封 密 外 如图,当点C为优弧
22、AB的中点时,连接AC并延长至D,使得,同弧所对的圆周角相等,为定角,为定角,点D的运动轨迹为一个圆,当点C为优弧AB的中点时,点C即为外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,由垂径定理可得:CE垂直平分AB,在中,AD为直径时最长,最长,的周长最长c最长为,c的取值范围为:;(3)方法一:第1步:作AB的垂直平分线交O于点P;第2步:以点P为圆心,PA为半径作P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画弧交P于点E;第5步:连接AE交O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得; 线 封 密 内
23、号学级年名姓 线 封 密 外 第2步:作的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交ABE的外接圆于点F;第5步:连接AF交O于点C,即为所求【点睛】题目主要考查等腰三角形的性质及三角形外角的性质,勾股定理,垂径定理,角的作法等,理解题意,综合运用各个知识点作图是解题关键3、(1)20人(2)36(3)见解析(4)【分析】(1)由条形统计图中B类学生数及扇形统计图中B类学生的百分比即可求得参与调查的总人数;(2)由扇形统计图可求得不达标的学生所占的百分比,它与360的积即为所求的结果;(3)现两种统计图及(1)中所求得的总人数,可分别求得C类、D
24、类学生的人数,从而可求得这两类中未知的学生数,从而可补充完整条形统计图;(4)记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表即可求得所有可能的结果数及所选两位同学恰好是相同性别的结果数,从而可求得概率(1)由条形统计图知,B类学生共有6+4=10(人),由扇形统计图知,B类学生所占的百分比为50%,则参与调查的总人数为:(人)故答案为:20人(2)由扇形统计图知,D类学生所占的百分比为:,则扇形统计图中“不达标”对应的圆心角度数是:36010%=36故答案为:36(3)C类学生总人数为:2025%=5(人),则C类学生中女生人数
25、为:(人) D类学生总人数为:2010%=2(人),则C类学生中男生人数为:(人)补充完整的条形统计图如下:(4)记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表如下: 线 封 密 内 号学级年名姓 线 封 密 外 男1女1女2男 男男1男女1男女2女女男1女女1女女2则选取两位同学的所有可能结果数为6种,所选两位同学恰好是相同性别的结果数有3种,所以所选两位同学恰好是相同性别的概率为:【点睛】本题是统计图的综合,考查了条形统计图与扇形统计图,简单事件的概率,关键是读懂两个统计图并能从图中获取信息4、(1)b=4a,-2(2)或【
26、分析】(1)将(-1,0)代入函数解析式可得,则抛物线对称轴为直线(2)由点B坐标可得AB所在直线为,过点B作轴交x轴于点C,可得AB为等腰直角三角形的斜边,从而可得点B当时和时点B的坐标为(2,3)或(4,3)或(-4,-3)或(-6,-5),再分类讨论抛物线开口向上或向下求解(1)将(-1,0)代入得,抛物线对称轴为直线(2)点B坐标为,点B所在直线为,点A在直线上,过点B作轴交x轴于点C,则,AB为等腰直角三角形的斜边,当时,当时,或,点B坐标为(2,3)或(4,3)或或,当时,抛物线开口向上,抛物线经过点(-1,0),对称轴为直线,抛物线经过点(-3,0),抛物线开口向上时,抛物线不经
27、过, 线 封 密 内 号学级年名姓 线 封 密 外 将(2,3)代入得,解得,将(4,5)代入得,解得,时,抛物线开口向下,抛物线不经过,将代入得,解得,将代入得,解得,综上所述,或【点睛】本题考查了抛物线与系数的关系,对称轴,抛物线的解析式,一次函数与二次函数的交点,熟练掌握抛物线的性质,灵活运用分类思想,待定系数法是解题的关键5、(1)6:(2)【分析】(1)按去括号、移项、合并同类项、系数化为1的步骤解答即可;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤解答即可.【详解】解:(1)3(2x3)=18(32x)去括号得:6x-9=18-3+2x移项得:4x=24系数化为1得:x=6;(2)去分母得:6-(2-x)=3(x+1)去括号得:6-2+x=3x+3移项得:-2x=-1系数化为1得:x=.【点睛】本题主要考查了解一元一次方程,解一元一次方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1.