《【难点解析】2022年中考数学三年高频真题汇总-卷(Ⅲ)(精选).docx》由会员分享,可在线阅读,更多相关《【难点解析】2022年中考数学三年高频真题汇总-卷(Ⅲ)(精选).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年中考数学三年高频真题汇总 卷() 考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的一元二次方程x2-x+k=0的一个根是2,则k的值是( )
2、A-2B2C1D12、0.0000205用科学记数法表示为()A2.05107B2.05106C2.05105D2.051043、如果分式2,则()ABCD4、雾霾天气时,宽空气中漂浮着大量的粉尘颗粒,若某各粉尘颗粒直径约为0.0000065米,则0.0000065用科学计数法表示为( )ABCD5、如图,在ABC中,C90,AC6,BC8,点P为斜边AB上一动点,过点P作PEAC于点E,PFBC于点F,连结EF,则线段EF的最小值为( )A1.2B2.4C2.5D4.86、如图,点P是正方形ABCD的对角线BD上一点,PEBC于点E,PFCD于点F,连接EF,给出下列五个结论:APEF;AP
3、EF;APD一定是等腰三角形;PFEBAP;PDEC,其中正确结论的序号是()ABCD7、若为正整数,则的值为( )A2B1C0D18、如图,直线和双曲线分别是函数y1x(x0),y2(x0)的图象,则以下结论:两函数图象的交点A的坐标为(2,2)当x2时,y1y2当x1时,BC3当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小其中正确结论的序号是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD9、如图,某小区有一块长为18米、宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地(图中阴影部分),它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道若设
4、人行通道的宽度为x米,则下列所列方程正确的是()A(182x)(62x)60B(183x)(6x)60C(182x)(6x)60D(183x)(62x)6010、若直线ykx+b平行于直线y3x+4,且过点(1,2),则该直线的解析式是()Ay3x2By3x5Cy3x+1Dy3x+5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某校规定:学生的数学期未总计成须由卷面成绩、研究性学习成绩、平时成绩三部分构成,各部分所占比例如图所示.小明本学期数学学科的卷面成绩、研究性学习成绩、平时成绩得分依次为分、分、分,则小明的数学期末总评成绩为_分.2、如图,数轴上的点A,B分别表
5、示数3和2,点C是线段AB的中点,则点C表示的数是_3、某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:,则这两名运动员中_的成绩更稳定4、某数的5倍加上3等于这个数的7倍减去5,这个数是_.5、已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y的图象上,且y1y20,则x1和x2的大小关系是_三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD四边形ABCD(1) (2)求边x、y的长度2、现定义一种新运算:“”,使得aba2ab,例如53525310若x(2x1)6,求x的值3、如图,E、F是ABCD对角线AC上两点,且AECF(1)求证:四边
6、形BFDE是平行四边形(2)如果把条件AECF改为BEDF,试问四边形BFDE还是平行四边形吗?为什么? 线 封 密 内 号学级年名姓 线 封 密 外 4、如图,四边形ABCD为正方形,点A(0,2),点B(0,3),反比例函数的图象经过点C(1)求反比例函数解析式;(2)若点P是反比例函数图象上的点,OAP的面积等于正方形ABCD面积的2倍,求点P的坐标5、如图,直线y1kx+2与反比例函数y2(x0)相交于点A,且当x1时,y1y2,当1x0时,y1y2(1)求出y1的解析式;(2)若直线y2x+b与x轴交于点B(3,0),与y1交于点C,求出AOC的面积-参考答案-一、单选题1、A【分析
7、】知道方程的一根,把x=2代入方程中,即可求出未知量k【详解】解:将x=2代入一元二次方程x2-x+k=0,可得:4-2+k=0,解得k=-2,故选A【点睛】本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用2、C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.0000205=2.05105故选C【点睛】此题考查科学记数法,难度不大3、D 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据题目中2,对所求
8、式子变形即可解答本题【详解】2,故选D【点睛】本题考查分式的值,解答本题的关键是明确分式求值的方法4、B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0000065=6.510-6,故选:B【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、D【分析】根据题意可得当四边形CEPF为正方形时,EF取最小值,因此设正方形的边长为x,所以可得AE=6-x, 根
9、据题意可得 ,利用相似比可得x的值.【详解】根据题意设四边形CEPF的CE=x,所以可得AE=6-x PEAC,C90 EP/BC 即 当 取得最小值所以EF=4.8故选D.【点睛】本题主要考查二次函数的最值问题在几何中的应用,关键在于根据勾股定理列出函数关系式.相似三角形判定和性质也是关键点. 线 封 密 内 号学级年名姓 线 封 密 外 6、B【分析】过P作PGAB于点G,根据正方形对角线的性质及题中的已知条件,证明AGPFPE后即可证明AP=EF;PFE=BAP;在此基础上,根据正方形的对角线平分对角的性质,在RtDPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得DP=EC
10、【详解】证明:如图,过P作PGAB于点G,点P是正方形ABCD的对角线BD上一点,GP=EP,在GPB中,GBP=45,GPB=45,GB=GP,同理,得PE=BE,AB=BC=GF,AG=AB-GB,FP=GF-GP=AB-GB,AG=PF,AGPFPE,AP=EF;PFE=GAPPFE=BAP,延长AP到EF上于一点H,PAG=PFH,APG=FPH,PHF=PGA=90,即APEF;点P是正方形ABCD的对角线BD上任意一点,ADP=45度,当PAD=45度或67.5度或90度时,APD是等腰三角形,除此之外,APD不是等腰三角形,故错误GFBC,DPF=DBC,又DPF=DBC=45,
11、PDF=DPF=45,PF=EC,在RtDPF中,DP2=DF2+PF2=EC2+EC2=2EC2,DP=EC其中正确结论的序号是;故选B.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用,熟练掌握并灵活运用是解题的关键.7、C【分析】由于n为正整数,则n与n+1为连续的两个正整数,必定一个为奇数一个为偶数,再根据-1的奇数次幂是-1,-1的偶数次幂是1,得出结果【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:n为正整数时,n与n+1一个为奇数一个为偶数;则(-1)n与(-1)n+1的值一个为1,一个为-1,互为相反数,故的值是0
12、故选:C【点睛】本题考查有理数的乘方,乘方的运算可以利用乘法的运算来进行负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是18、A【分析】求得两回事图象的交点坐标即可判定正确;根据图象即可判定错误;把X=1,分别代入两函数解析式,进而求得BC的长,即可判定正确;根据函数的性质即可判定正确【详解】解 得 两函数图象的交点的坐标为(2,2),故正确;由图象可知,当x2时, y1 y2故错误;当x=1时, y1=1, y2=4,BC=4-1=3,故正确;函数为y1=x(x0),y2(x0)的图象在第一象限,y1随着x的增大而增大, y2随着x的增大而減小,故正确;故选
13、A.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于观察函数图象进行判断9、D【分析】利用平移的性质,进而表示出长与宽,根据面积列方程得出答案【详解】解:设人行通道的宽度为x米,根据题意可得:(183x)(62x)60,故选:D【点睛】此题主要考查了由实际问题抽象出一元二次方程,利用平移的性质得出长与宽是解题关键10、B【解析】【分析】先利用两直线平行问题得到k=3,然后把(1,-2)代入y=3x+b求出b即可【详解】直线y=kx+b平行于直线y=3x+4k=3把(1,-2)代入y=3x+b得3+b=-2,解得b=-5该直线的解析式是y=3x-5故选B【点睛】 线 封 密 内 号学
14、级年名姓 线 封 密 外 此题考查一次函数中的直线位置关系,解题关键在于先求出k,再代入已知点二、填空题1、87【分析】按统计图中各部分所占比例算出小明的期末数学总评成绩即可【详解】解:小明的期末数学总评成绩=9060%+8020%+8520%=87(分)故答案为872、-0.5【分析】根据线段中点坐标确定出C表示的数即可【详解】根据题意得:=-0.5,则点C表示的数为-0.5故答案为-0.5【点睛】此题考查了数轴,熟练掌握线段中点坐标是解本题的关键3、甲【分析】根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【详解】解:S2甲=0.0006,S2乙=0.0315,S
15、2甲S2乙,这两名运动员中甲的成绩更稳定故答案为甲【点睛】本题考查了统计学的相关知识注意:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定4、4【解析】【分析】根据数量间的关系列方程求解.【详解】解:设这个数为x,由题意得:5x+3=7x-5,解得:x=4,故答案为4.【点睛】解决这类问题主要找出题里面蕴含的数量间的相等关系,设未知数为x,列出方程解决问题5、x1x2【分析】首先根据反比例函数的解析式,可判断函数的增减性,再利用y1y20,来判断x1和x2的
16、大小.【详解】 线 封 密 内 号学级年名姓 线 封 密 外 根据反比例函数的解析式y可得反比例函数在二、四象限,在x的范围内是增函数,所以当y1y20,可得x1x2.【点睛】本题主要考查反比例函数的性质,应当熟练掌握,这是必考点.三、解答题1、(1)83;(2)x12,y【分析】(1)利用相似多边形的对应角相等求得答案;(2)利用相似多边形的对应边成比例列式求得x、y的值.【详解】解:(1)四边形ABCD四边形ABCD,AA62,BB75,360627514083,故答案为83;(2)四边形ABCD四边形ABCD,解得:x12,y【点睛】本题考查了相似多边形的性质,解题的关键是了解相似多边形
17、的对应边成比例,对应角相等2、x3或x2【分析】根据x(2x1)6,可得:x2x(2x1)6,据此求出x的值是多少即可【详解】解:x(2x1)6,x2x(2x1)6,x2x60,解得x3或x2【点睛】本题考查了新运算及解一元二次方程,理解新运算并列出方程是解题关键.3、(1)详见解析;(2)四边形BFDE不是平行四边形,理由详见解析.【分析】(1)根据对角线互相平分的四边形是平行四边形即可证明;(2)四边形BFDE不是平行四边形.【详解】(1)证明:连接BD,交AC于点OABCD是平行四边形OAOC OBOD(平行四边形的对角线互相平分)又AECF 线 封 密 内 号学级年名姓 线 封 密 外
18、 OAAEOCCF,即OEOF四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE不是平行四边形因为把条件AECF改为BEDF后,不能证明BAE与DCF全等【点睛】题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,熟练掌握是解题的关键.4、(1);(2)P(50,)或(50,)【解析】【分析】(1)先由点A的坐标为(0,2),点B的坐标为(0,-3)得到AB=5,则点C的坐标为(5,-3),根据反比例函数图象上点的坐标特征得k=-15,则反比例函数的解析式为y=-(2)设点P的横坐标为x,利用PAD的面积恰好等于正方形ABCD的面积的2倍得到x50或x
19、50,再分类讨论即可解答【详解】解:(1)点A的坐标为(0,2),点B的坐标为(0,3),AB=5,四边形ABCD为正方形,点C的坐标为(5,3),k=5(3)=15,反比例函数的解析式为y;(2)设点P的横坐标为x,OAP的面积等于正方形ABCD面积的2倍则SACPOA|x|50,即2|x|50解得x50或x50故当P在第四象限是P(50,),当P在第二象限是为(50,)【点睛】此题考查待定系数法求反比例函数解析式,解题关键在于根据A,B的坐标得到AB=55、 (1)y1x+2;(2)SAOC.【解析】【分析】(1)根据当x1时,y1y2,当1x0时,y1y2。可得A点的横坐标,再将A点的横
20、坐标代入反比例函数,计算A点的纵坐标,因此可得A点的坐标,代入一次函数,可得k的值,即可的一次函数的解析式.(2)根据B点的坐标计算b的值,在联立方程组计算C点的坐标,再求出直线y1与x轴的交点,进而计算面积.【详解】解:(1)当x1时,y1y2,当1x0时,y1y2,点A的横坐标为1,当x1时,y3,则A(1,3),把A(1,3)代入ykx+2得k+23,解得k1y1的解析式为y1x+2;(2)y2x+b与x轴交于点B(3,0),6+b0,解得b6, 线 封 密 内 号学级年名姓 线 封 密 外 直线BC的解析式为y2x6,解方程组 得 ,则点C的坐标为(,),直线yx+2与y轴的交点坐标为(2,0),SAOC(3+)2【点睛】本题主要考查一次函数与反比例函数的综合题,关键在于根据直线与反比例函数的联立方程组,求交点坐标.