《2022年浙教版初中数学七年级下册第四章因式分解专题训练试题.docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解专题训练试题.docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专题训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式中,不能用完全平方公式分解的个数为( );.A.1个B.2个C.3个D.4个2、若a2-b2=4,a-b=2,则a+b的值为( )A.- B. C.1D.23、下列各式从左到右的变形中,为因式分解的是()A.x(ab)axbxB.x21+y2(x1)(x+1)+y2C.ax+bx+cx(a+b)
2、+cD.y21(y+1)(y1)4、下列各式从左到右的变形中,是因式分解的为( ).A.B.C.D.5、若是整数,则一定能被下列哪个数整除( )A.2B.3C.5D.76、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,现将3a(x21)3b(x21)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱新化C.我爱新化D.新化数学7、下列等式从左到右的变形,属于因式分解的是()A.x2+2x1(x1)2B.(a+b)(ab)a2b2C.x2+4x+4(x+2)2D.ax2aa(x21)8、下列多项式因式
3、分解正确的是( )A.B.C.D.9、下列各式由左到右的变形中,属于因式分解的是( ).A.B.C.D.10、下列多项式:;.能用公式法分解因式的是( )A.B.C.D.11、下面的多项式中,能因式分解的是()A.2m2B.m2+n2C.m2nD.m2n+112、已知,则的值是( )A.6B.6C.1D.113、多项式x2y(ab)y(ba)提公因式后,余下的部分是()A.x2+1B.x+1C.x21D.x2y+y14、多项式的公因式是()A.x2y3B.x4y5C.4x4y5D.4x2y315、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是()A.若a100,则b
4、c0B.若a100,则bc1C.若bc,则a+bcD.若a100,则abc二、填空题(10小题,每小题4分,共计40分)1、因式分解:2a2-4a-6=_2、因式分解:_3、若,则代数式的值等于_4、若a+b2,ab3,则代数式a3b+2a2b2+ab3的值为_5、已知a2b5,则代数式a24ab4b25的值是_6、因式分解:a3-16a=_7、分解因式:3x2y12xy2_8、若关于的二次三项式可以用完全平方公式进行因式分解,则_9、若ab=2,a-b=3,则代数式ab2-a2b=_10、已知,则_三、解答题(3小题,每小题5分,共计15分)1、分解因式:2、材料一:对于个位数字不为零的任意
5、三位数M,将其个位数字与百位数字对调得到M,则称M为M的“倒序数”,将一个数与它的“倒序数”的差的绝对值与99的商记为F(M)例如523为325的“倒序数”,F(325)2;材料二:对于任意三位数满足,ca且a+c2b,则称这个数为“登高数”(1)F(935);F(147);(2)任意三位数M,求F(M)的值;(3)已知S、T均为“登高数”,且2F(S)+3F(T)24,求S+T的最大值3、教科书中这样写道:“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方,再减去这个项,使整个式子的值
6、不变,这种方法叫做配方法配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求最值问题例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);例如求代数式2x2+4x-6=2(x+1)2-8,当x= -1时,2x2+4x-6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2-4m-5=(2)当a,b为何值时,多项式2a2+3b2-4a+12b+18有最小值,求出这个最小值(3)当a,b为何值时,多项式a2 - 4ab+5b2 - 4a+4
7、b+27有最小值,并求出这个最小值-参考答案-一、单选题1、C【分析】分别利用完全平方公式分解因式得出即可.【详解】解:x2-10x+25=(x-5)2,不符合题意;4a2+4a-1不能用完全平方公式分解;x2-2x-1不能用完全平方公式分解;m2+m=-(m2-m+)=-(m-)2,不符合题意;4x4x2+不能用完全平方公式分解.故选:C.【点睛】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.2、D【分析】平方差公式为(a+b)(a-b)=a2-b2可以得到a2-b2=(a+b)(a-b),把已知条件代入可以求得(a+b)的值.【详解】a2- b2=4,a- b=1
8、,由a2-b2=(a+b)(a-b)得到,4=2(a+b),a+b=2,故选:D.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.公式:(a+b)(a-b)=a2-b2.3、D【分析】根据因式分解的定义解答即可.【详解】解:A、x(ab)axbx,是整式乘法,故此选项不符合题意;B、x21+y2(x1)(x+1)+y2,不是因式分解,故此选项不符合题意;C、ax+bx+cx(a+b)+c,不是因式分解,故此选项不符合题意;D、y21(y+1)(y1),是因式分解,故此选项符合题意.故选D.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个
9、多项式因式分解,也叫做分解因式.4、B【分析】根据因式分解的定义把一个多项式化成几个整式的积的形式,叫因式分解.然后对各选项逐个判断即可.【详解】解:A、两因式之间用加号连结,是和的形式不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、将积化为和差形式,是多项式乘法运算,不是因式分解,故本选项不符合题意;D、两因式之间用加号连结,是和的形式,不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键 .5、A【分析】根据题目中的式子,进行因式分解,根据a是整数,从而可以解答本题.【详解】解:a2+a=a(a+1)
10、,a是整数,a(a+1)一定是两个连续的整数相乘,a(a+1)一定能被2整除,选项B、C、D不符合要求,所以答案选A,故选:A.【点睛】本题考查了因式分解的应用,准确理解题意并熟练掌握因式分解的方法是解题的关键.6、C【分析】把所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:,x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,结果呈现的密码信息可能是:我爱新化,故选:C.【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.7、C【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把
11、这个多项式因式分解分别进行判断,即可得出答案.【详解】A. x2+2x1(x1)2,故A不符合题意;B. a2b2=(a+b)(ab),故B不符合题意;C. x2+4x+4(x+2)2,是因式分解,故C符合题意;D. ax2aa(x21)=a(x+1)(x-1),分解不完全,故D不符合题意;故选:C.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义.8、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】解:A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了提公因式法,
12、公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9、C【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A不符合;B、没把一个多项式转化成几个整式积,故B不符合;C、把一个多项式转化成几个整式积,故C符合;D、没把一个多项式转化成几个整式积,故D不符合;故选:C.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积.10、C【分析】根据公式法的特点即可分别求解.【详解】不能用公式法因式分解;,可以用公式法因式分解;不能用公式法因式分解;=,能用公式法因式分解;=,能用公式法因式分解.能用公式法分解因
13、式的是故选C.【点睛】此题主要考查因式分解,解题的关键是熟知乘方公式的特点.11、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m22(m1),故本选项符合题意;B、m2+n2,不能因式分解,故本选项不合题意;C、m2n,不能因式分解,故本选项不合题意;D、m2n+1,不能因式分解,故本选项不合题意;故选A.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.12、B【分析】首先将 变形为,再代入计算即可.【详解】解:, ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.13、A【详解】直接提取公因
14、式y(ab)分解因式即可.【解答】解:x2y(ab)y(ba)x2y(ab)+y(ab)y(ab)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14、D【分析】根据公因式的意义,将原式写成含有公因式乘积的形式即可.【详解】解:因为,所以的公因式为,故选:D.【点睛】本题考查了公因式,解题的关键是理解公因式的意义是得出正确答案的前提,将各个项写成含有公因式积的形式.15、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:,或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用
15、因式分解化简等式,熟练掌握因式分解的方法是解题关键.二、填空题1、2(a-3)(a+1)a+1)(a-3)【分析】提取公因式2,再用十字相乘法分解因式即可.【详解】解:2a24a62(a22a3)2(a-3)(a+1)故答案为:2(a-3)(a+1)【点睛】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.2、【分析】先分组,然后根据公式法因式分解.【详解】.故答案为:.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的
16、关键.3、4【分析】直接利用已知代数式将原式得出x+y=2,再将原式变形把数据代入求出答案.【详解】解:x+y-2=0,x+y=2,则代数式x2+4y-y2=(x+y)(x-y)+4y=2(x-y)+4y=2(x+y)=4.故答案为:4.【点睛】此题主要考查了公式法的应用,正确将原式变形是解题关键.4、-12【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【详解】解:a+b=2,ab=3,a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=34,=12.故答案为:12.【点
17、睛】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.5、20【分析】将a=2b-5变为a-2b=-5,再根据完全平方公式分解a2-4ab+4b2-5=(a-2b)2-5,代入求解.【详解】解:a=2b-5,a-2b=-5,a2-4ab+4b2-5=(a-2b)2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.6、a(a+4)(a-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=a(a2-16)=a(a+4)(a-4),故答案为:a(a+4)(a-4).【点睛】此题考查了
18、提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.7、【分析】根据提公因式法因式分解即可.【详解】3x2y12xy2故答案为:【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.8、-3或5【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:x2-2(m-1)x+16能用完全平方公式进行因式分解,-2(m-1)=8,解得:m=-3或5.故答案为:-3或5.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.9、6【分析】用提公因式法将ab2-a2b分解为含有ab,a-b的形式,代入即可.【详解】解:ab=2,a-b=3,ab2
19、-a2b=-ab(a-b)=23=6,故答案为:6.【点睛】本题考查了用提公因式法因式分解,解题的关键是将ab2-a2b分解为含有ab,a-b的形式,用整体代入即可.10、【分析】先将进行因式分解,然后根据已知条件,即可求解.【详解】解:,.故答案为:.【点睛】本题主要考查了平方差公式的应用,熟练掌握是解题的关键.三、解答题1、【分析】先提取公因式,然后利用十字相乘和平方差公式分解因式即可.【详解】解:原式=.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.2、(1)4,6;(2)ca;(3)948【分析】(1)根据“倒序数”的定义即可求解;(2)由题意得:100a+
20、10b+c,M100c+10b+a,则F(M)|ac|,进而求解;(3)由(2)知,F(s)caA,F(T)ca,而a+c2b,则c、a同奇或同偶,求出A6,B4,进而求解.【详解】解:(1)由题意得:F(935)4,F(147)6,故答案为:4,6;(2)由题意得:100a+10b+c,M100c+10b+a,则F(M)|ac|,ca,故F(M)ca;(3)设S,T,由(2)知,F(s)caA,F(T)ca,由题意得:2A+3B24,a+c2b,则c、a同奇或同偶,故ca和ca为偶数,26+3424,故A6,B4,要使S+T尽可能大,则a的百位数要尽可能大,对S而言,ca6,故S最大取369
21、,对T而言,ca4,则T最大可取579,故S+T的最大值369+579948.【点睛】本题考查了因式分解的应用,主要考查了用字母表示数,整式的加减运算,绝对值的意义等,正确理解题意是解本题的关键.3、(1);(2)当,时,最小值为4;(3)当,时,最小值为19.【分析】(1)根据阅读材料,先将变形为,再根据完全平方公式写成,然后利用平方差公式分解即可;(2)利用配方法将多项式转化为完全平方式,然后利用非负数的性质进行解答;(3)利用配方法将多项式转化为完全平方式,然后利用非负数的性质进行解答.【详解】解:(1).故答案为;(2),当,时,有最小值,最小值为4;(3),当,时,多项式有最小值19.【点睛】本题考查了因式分解的应用,完全平方公式、以及非负数的性质,解题的关键是熟练掌握因式分解的方法.