《2022年最新精品解析北师大版九年级数学下册第一章直角三角形的边角关系同步训练试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年最新精品解析北师大版九年级数学下册第一章直角三角形的边角关系同步训练试题(含详解).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第一章直角三角形的边角关系同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,C=90,ABC=30,D是AC的中点,则tanDBC的值是( )ABCD2、如图,在中,
2、点P为AC上一点,且,则的值为( )A3B2CD3、图是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图所示的四边形若,则的值为( )ABCD4、如图,在RtABC中,ABC90,BD是AC边上的高,则下列选项中不能表示tanA的是()ABCD5、如图,小王在高台上的点A处测得塔底点C的俯角为,塔顶点D的仰角为,已知塔的水平距离ABa,则此时塔高CD的长为()Aasin+asin Batan+atan CD6、学习了三角函数的相关知识后,小丽测量了斜坡上一棵垂直于地面的大树的高度如图,小丽先在坡角为的斜坡上的点A处,测得树尖E的仰角为,然后沿斜
3、坡走了10米到达坡脚B处,又在水平路面上行走20米到达大树所在的斜坡坡脚C处,大树所在斜坡的坡度,且大树与坡脚的距离为15米,则大树的高度约为( )(参考数据:结果精确到0.1)A10.9米B11.0米C6.9米D7.0米7、如图,点为边上的任意一点,作于点,于点,下列用线段比表示的值,正确的是( )ABCD8、如图,ABC的顶点是正方形网格的格点,则sinACB的值为()A3BCD9、如图,ABC的顶点在正方形网格的格点上,则cosACB的值为( )ABCD10、在ABC中,C=90,若BC=4,则AB的长为( )A6BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)
4、1、如图,为了测量河宽(假设河的两岸平行),在河的彼岸选择一点,点看点仰角为,点看点仰角为,若,则河宽为_(结果保留根号)2、在RtABC中,C=90,如果cosA=,AC=2,那么AB的长为_3、在ABC中,那么的长为_4、已知在RtABC中,C90,AC6,BC8,则sinB等于 _5、如图,是拦水坝的横断面,堤高为6米,斜面坡度为,则斜坡的长为_米三、解答题(5小题,每小题10分,共计50分)1、解答:(1)12021+|2|+2cos30+(2tan60)0(2)先化简,再求值:(),其中a满足方程x2+5x+602、如图,在ABC中,B30,BC40cm,过点A作ADBC,垂足为D,
5、ACD75(1)求点C到AB的距离;(2)求线段AD的长度3、近日,市委、市政府公布了第七批重庆市爱国主义教育基地名单,重庆市育才中学创办的陶行知纪念馆位列其中如图,为了测量陶行知纪念馆的高度,小李在点处放置了高度为1.5米的测角仪,测得纪念馆顶端点的仰角,然后他沿着坡度的斜坡走了6.5米到达点,再沿水平方向走4米就到达了纪念馆底端点(结果精确到0.1,参考数据:,)(1)求点到纪念馆的水平距离;(2)求纪念馆的高度约为多少米?4、如图,平行四边形ABCD中,对角线AC平分BAD,与BD交O一点,直线EF过点O分别交直线AB,CD,BC于E,F,H(1)求证:BOEDOF;(2)若OC2HCB
6、C,OC:BH3,求sinBAC;(3)在AOF中,若AF8,AOOF4,求平行四边形ABCD的面积5、已知如图,cosABC ,点M在射线BA上,BM8,点N在射线BC上(1)给出条件:MN7;MN9;BMN75能使BN的长唯一确定的条件是 (填序号);(2)在第(1)题中选一个使BN的长唯一确定的条件,求出此时BN的长度-参考答案-一、单选题1、D【分析】根据正切的定义以及,设,则,结合题意求得,进而即可求得【详解】解:在ABC中,C=90,ABC=30,设,则, D是AC的中点,故选D【点睛】本题考查了正切的定义,特殊角的三角函数值,掌握正切的定义是解题的关键2、A【分析】过点P作PDA
7、B交BC于点D,因为,且,则tanPBD=tan45=1,得出PB=PD,再有,进而得出tanAPB的值【详解】解:如图,过点作交于点,,,且,PBD=45,又,故选A【点睛】本题主要考查了相似三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线进行求解3、A【分析】在中,可得的长度,在中,代入即可得出答案【详解】解:,在中,在中,.故选:A【点睛】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键.4、D【分析】根据题意可推出ABC、ADB、BDC均为直角三角形,再在三个直角三角形中分别表示出tanA即可【详解】解:在RtABC中,ABC=90
8、,BD是AC边上的高,ABC、ADB、BDC均为直角三角形,又A+C=90,C+DBC=90,A=DBC,在RtABC中,tanA=,故A选项不符合题意;在RtABD中,tanA=,故B选项不符合题意;在RtBDC中,tanA=tanDBC=,故D选项不符合题意;选项D表示的是sinC,故D选项符合题意;故选D【点睛】本题考查解直角三角形相关知识,熟练掌握锐角三角函数在直角三角形中的应用是解题关键5、B【分析】根据直角三角形锐角三角函数即可求解【详解】解:在中,在中,故选:B【点睛】本题考查了解直角三角形的应用仰角俯角问题,解题的关键是掌握直角三角形锐角三角函数6、D【分析】过点A作AGED交
9、ED延长线于点G,过点A作AFCB,交CB的延长线于点F,延长BC交ED的延长线于点H,可知四边形AFHG为矩形,解直角三角形ABF得AF=5,BF=,解直角三角形CDH得DH=9,CH=12,从而得到AG,再通过解直角三角形AGE求得EG的长,进一步得出结论【详解】解:过点A作AGED交ED延长线于点G,过点A作AFCB,交CB的延长线于点F,延长BC交ED的延长线于点H,如图,则四边形AFHG为矩形,AG=FH,GH=AF在RtABF中, 在RtCHD中, 可设, 由勾股定理得, 解得, 在RtAGE中, 故选:D【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构
10、造出直角三角形是解答此题的关键7、C【分析】根据正弦值等于对边与斜边的比,可得结论【详解】解:在中,;在中,故选:【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键8、D【分析】连接格点AD,构造直角三角形,先计算AC,再算ACB的正弦即可【详解】连接格点A、D,如图在RtADC中,AD3,CD1,CAsinACB故选:D【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键9、D【分析】根据图形得出AD的长,进而利用三角函数解答即可【详解】解:过A作ADBC于D,DC=1,AD=3,AC=,cosACB=,故选:D【点睛】本题主要考查了解直角三角形
11、,解题的关键是掌握勾股定理逆定理及余弦函数的定义10、A【分析】由题意直接根据三角函数定义进行分析计算即可得出答案【详解】解:C=90,BC=4,,.故选:A.【点睛】本题考查解直角三角形中三角函数的应用,熟练掌握直角三角形边角之间的关系是解题的关键二、填空题1、【分析】在RtACB中,利用三角函数求出 ,在RtADB中,利用三角函数,根据得出,求出AB即可【详解】解:在RtACB中,tanACB=,在RtADB中,tanADB=,CD=BC-DC=m,解得m故答案为【点睛】本题考查解直角三角形,掌握解直角三角形的方法,与特殊三角函数值是解题关键2、6【分析】根据余弦的定义可得,代入AC=2即
12、可求得【详解】解:如图,故答案为:6【点睛】本题考查了已知余弦求边长,掌握余弦的定义是解题的关键,在中,3、6【分析】根据解三角形可直接进行求解【详解】解:在ABC中,;故答案为6【点睛】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键4、【分析】根据正弦的定义计算即可【详解】解:在RtABC中,C=90,AC=6,BC=8,AB=,sinB=,故答案为:【点睛】本题考查了锐角三角函数的定义及勾股定理,掌握锐角的对边与斜边的比叫做这个角的正弦是解题的关键5、【分析】由斜面坡度为有,解得AC=12,再由勾股定理求得AB即可【详解】斜面坡度为是直角三角形,故有故答案为:【点睛】本题考察了直角
13、三角形应用题,解直角三角形应用题的一般步骤(1)弄清题中的名词、术语的意义,如仰角、俯角、坡度、坡角等概念,然后根据题意画出几何图形,建立数学模型;(2)将实际问题中的数量关系归结为解直角三角形的问题,当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形或矩形;(3)寻找直角三角形,并解这个三角形三、解答题1、(1)2(2),【分析】(1)先计算乘方、去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再解方程求出a的值,结合分式有意义的条件确定a的值,继而代入计算即可(1)解: ;(2)解:;,解得或,分
14、式要有意义,a-20a2+2a0,且,a满足方程x2+5x+60,原式【点睛】本题主要考查了特殊角三角函数值,零指数幂,绝对值,解一元二次方程,分式的化简求值,分式有意义的条件,熟知相关知识是解题的关键2、(1)20cm;(2)【分析】(1)过C点作CHAB于H,如图,在RtBCH中,利用含30的直角三角形三边的关系易得CHBC20;(2)在RtBCD中利用含30的直角三角形三边的关系可得CH20,BHCH20,再利用三角形外角性质计算出BAC45,则ACH为等腰直角三角形,所以AHCH20,然后利用面积法求AD【详解】解:(1)过C点作CHAB于H,如图,在RtBCH中,B30,CHBC40
15、20cm,即点C到AB的距离为20cm;(2)在RtBCH中,B30,CH20cm,BHCH20cm,ACDB+BAC,BAC753045,ACH为等腰直角三角形,AHCH20cm,AB(20+20)cm,ADBCCHAB,AD(10+10)cm【点睛】本题主要考查了含30直角三角形的性质 、解直角三角形、三角形的外角以及三角形的面积等知识点,正确作出辅助线、构造直角三角形成为解答本题的关键3、(1)10米;(2)11.3米【分析】(1)AB延长交地面于H,过点F作FGCH于G,过点D的水平线交AH与E,根据坡度的斜坡走了6.5米到达点,设FG=x,CG=2.4x,CF=6.5米,在RtFGC
16、中,根据勾股定理得,即,解方程米,得出CG=2,4x=6米,可证四边形BHGF为矩形,得出BF=HG=4米,BH=FG=2.5米,CH=HG +CG=4+6=10米,再证四边形EHCD为矩形,得出DE=CH=10米;(2)在RtAED中,DE=10米,利用三角函数AE=DEtan51101.23=12.3米即可再利用线段和差AB=AE+EH-BH代入数据计算即可【详解】解:(1) AB延长交地面于H,过点F作FGCH于G,过点D的水平线交AH与E,坡度的斜坡走了6.5米到达点,设FG=x,CG=2.4x,CF=6.5米,在RtFGC中,根据勾股定理得,即,解得米,CG=2,4x=6米,BFCH
17、,AHCH,BFAH,FBH=BHG=90,FGCH,FGH=90,四边形BHGF为矩形,BF=HG=4米,BH=FG=2.5米,CH=HG +CG=4+6=10米,CDCH,DCH=90,DECH,DEH+BHG=180,DEH=180-BHG=90,DEH=DCH=BHG=90,四边形EHCD为矩形,DE=CH=10米, (2)在RtAED中,DE=10米,AE=DEtan51101.23=12.3米,BH=2.5米,EH=CD=1.5米AB=AE+EH-BH=12.3+1.5-2.5=11.3米【点睛】本题考查解直角三角形,利用辅助线构造矩形,直角三角形,勾股定理,直接开平方法解一元二次
18、方程,掌握解直角三角形的方法,矩形性质,直角三角形性质,勾股定理的应用,直接开平方法解一元二次方程是解题关键4、(1)证明见解析;(2);(3)80【分析】(1)先根据平行四边形的性质可得,再根据平行线的性质可得,然后根据三角形全等的判定定理即可得证;(2)先根据菱形的判定证出平行四边形是菱形,再根据菱形的性质可得,然后设,从而可得,代入解一元二次方程可得,由此可得,最后在中,利用正弦三角函数的定义即可得;(3)先根据平行四边形的判定证出四边形是平行四边形,再根据矩形的判定证出平行四边形是矩形,根据矩形的性质可得,然后利用勾股定理可得,设,从而可得,在中,利用勾股定理可得,最后利用平行四边形的
19、面积公式即可得【详解】证明:(1)四边形是平行四边形,在和中,;(2),平分,平行四边形是菱形,设可得,由得:,解得或(不符题意,舍去),在中,;(3)由(1)已证:,即,又,即,四边形是平行四边形,平行四边形是矩形,设,则,在中,即,解得,即,则平行四边形的面积为【点睛】本题考查了三角形全等的判定定理与性质、菱形的判定与性质、矩形的判定与性质、一元二次方程的应用、正弦三角函数等知识点,熟练掌握特殊平行四边形的判定与性质是解题关键5、(1);(2)【分析】(1)过点作交于点,求出,比较与的大小可判断,根据可知,由两角及夹边即可确定;(2)当时,解直角三角形求出,即可【详解】(1)如图,过点作交于点,当时,有两种情况,即的长不唯一,故错误;当时,有一种情况,即的长唯一,故正确;当时,已知两角及夹边即可确定,的长唯一,故正确,故答案为:;(2)如图,过点作交于点,当时,【点睛】本题考查解直角三角形,三角函数的定义,勾股定理等知识,解题的关键是掌握基本知识,属于中考常考题型