《2022年最新沪科版九年级数学下册第24章圆综合练习试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版九年级数学下册第24章圆综合练习试题(含答案解析).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点P是等边三角形ABC内一点,且PA3,PB4,PC5,则APB的度数是( )A90B100C120D1502、
2、如图,都是上的点,垂足为,若,则的度数为( )ABCD3、如图,在ABC中,BAC130,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,E在同一条直线上时,则BAD的大小是()A80B70C60D504、如图,AB是O的直径,弦,则阴影部分图形的面积为( )ABCD5、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A平移B翻折C旋转D以上三种都不对6、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD7、将一把直尺、一个含60角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直
3、尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )A6BC3D8、如图,AB是的直径,弦CD交AB于点P,则CD的长为( )ABCD89、如图,ABC外接于O,A30,BC3,则O的半径长为( )A3BCD10、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20B25C30D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正多边形的半径与边长相等,那么正多边形的边数是_2、如图所示,AB是O的直径,弦CDAB于H,A=30,OH=1,则O的半径是_3、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为
4、若,则的大小为_(度)4、AB是的直径,点C在上,点P在线段OB上运动设,则x的取值范围是_5、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为_cm三、解答题(5小题,每小题10分,共计50分)1、如图,AB为O的切线,B为切点,过点B作BCOA,垂足为点E,交O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC(1)求证:AC为O的切线;(2)若O半径为2,OD4求线段AD
5、的长2、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上记点D1的坐标是(m,n),C1的坐标是(p,q)(1)设DAD130,n2,求证:OD1的长度;(2)若DAD190,m,n满足m+n4,p2+q225,求p+q的值3、已知:如图,ABC为锐角三角形,ABAC 求作:一点P,使得APCBAC作法:以点A为圆心, AB长为半径画圆;以点B为圆心,BC长为半径画弧,交A于点C,D两点;连接DA并延长交A于点P点P即为所求(1)使用直尺和圆规,依作法补全图形(
6、保留作图痕迹);(2)完成下面的证明证明:连接PC,BDABAC,点C在A上BCBD,_BACCAD 点D,P在A上,CPDCAD(_) (填推理的依据)APCBAC4、如图,是的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H(1)判断与的位置关系并说明理由;(2)若,求弧的长5、在中,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90得到线段AF,连接BF,与直线AD交于点G(1)如图,当点E在线段CD上时,依题意补全图形,并直接写出BC与CF的位置关系;求证:点G为BF的中点(2)直接写出AE,
7、BE,AG之间的数量关系-参考答案-一、单选题1、D【分析】将绕点逆时针旋转得,根据旋转的性质得,则为等边三角形,得到,在中,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数【详解】解:为等边三角形,可将绕点逆时针旋转得,如图,连接,为等边三角形,在中,为直角三角形,且,故选:D【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等2、B【分析】连接OC根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC,和分别是所对的圆周角和圆心角,故
8、选:B【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键3、A【分析】根据三角形旋转得出,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到DAC=50,由此即可求解【详解】证明:绕点C逆时针旋转得到,ADC=DAC,点A,D,E在同一条直线上,DAC=50,BAD=BAC-DAC=80故选A【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质4、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到求出扇形C
9、OB面积,即可得出答案【详解】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90,CDB=30,COB=2CDB=60,OCE=30,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键5、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点
10、转动一个角度,叫做图形的旋转)是解题关键6、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键7、D【分析】如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知OCA=OBA=90,OC=OB,即可证明RtOCARtOBA得到OAC=OAB,则,AOB=30,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为【详解】解:
11、如图所示,设圆的圆心为O,连接OC,OB,AC,AB都是圆O的切线,OCA=OBA=90,OC=OB,又OA=OA,RtOCARtOBA(HL),OAC=OAB,DAC=60,AOB=30,OA=2AB=6,圆O的直径为,故选D【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键8、A【分析】过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长【详解】解:如图,过点作于点,连接, AB是的直径,在中,故选A【点睛】本题考查了勾股定理,含30度角的直
12、角三角形的性质,垂径定理,掌握以上定理是解题的关键9、A【分析】分析:连接OA、OB,根据圆周角定理,易知AOB=60;因此ABO是等边三角形,即可求出O的半径【详解】解:连接BO,并延长交O于D,连结DC,A=30,D=A=30,BD为直径,BCD=90,在RtBCD中,BC=3,D=30,BD=2BC=6,OB=3故选A【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30角所对直角三角形性质是解题的关键10、B【分析】连接OA,如图,根据切线的性质得PAO=90,再利用互余计算出
13、AOP=50,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90,P=40,AOP=50,OA=OB,B=OAB,AOP=B+OAB,B=AOP=50=25故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系二、填空题1、六【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则OAB是等边三角形,得到AOB=60,则,由此即可得到答案【详解】解:设这个正多边形的边数为n,正多边形的半径与边长相等,OA=OB=AB,OAB是等边三角形,AOB=6
14、0,正多边形的边数是六,故答案为:六【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键2、2【分析】连接OC,利用半径相等以及三角形的外角性质求得COH=60,OCH=30,利用30度角的直角三角形的性质即可求解【详解】解:连接OC,OA=OC,A=30,COH=2A=60,弦CDAB于H,OHC=90,OCH=30,OH=1,OC=2OH=2,故答案为:2【点睛】本题考查了垂径定理和含30角的直角三角形的性质熟练掌握垂径定理是解题的关键3、20【分析】先利用旋转的性质得到ADC=D=90,DAD=,再利用四边形内角和计算出BAD=70,然后利用互余计算出DA
15、D,从而得到的值【详解】矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,ADC=D=90,DAD=,ABC=90,BAD=180-1=180-110=70,DAD=90-70=20,即=20故答案为20【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等4、【分析】分别求出当点P与点O重合时,当点P与点B重合时x的值,即可得到取值范围【详解】解:当点P与点O重合时,OA=OC,即;当点P与点B重合时,AB是的直径,x的取值范围是【点睛】此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P的运动位置是解题
16、的关键5、【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,则ODMN,MD=DN,在RtODM中,OM=180cm,OD=60cm,cm,cm,即该球在大圆内滑行的路径MN的长度为cm,故答案为:【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键三、解答题1、(1)见解析;(2)4【分析】(1)连接OB,证明AOBAOC(SSS),可得ACOABO90,即可证明AC为O的切线;(2)在RtBOD中,
17、勾股定理求得BD,根据sinD,代入数值即可求得答案【详解】解:(1)连接OB,AB是O的切线,OBAB,即ABO90,BC是弦,OABC,CEBE,ACAB,在AOB和AOC中,AOBAOC(SSS),ACOABO90,即ACOC,AC是O的切线;(2)在RtBOD中,由勾股定理得,BD2,sinD,O半径为2,OD4,解得AC2,ADBD+AB4【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键2、(1)4;(2)-1或-7【分析】(1)如图,且三点在一条直线上的情况,连接,过点向作垂线交点为,在直角三角形中,可求的长;(2)
18、如图,过点向作垂线交点为,过点作轴垂线交于点,作交点为;由,知,点G坐标为,得,由知的值,从而得到的值【详解】解:(1)DAD130且D1、C1、O三点在一条直线上如图所示,连接,过点向作垂线交点为(2)如图过点向作垂线交点为,过点作轴垂线交于点,作交点为,在和中点横坐标可表示为p+q=-7或-1【点睛】本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识解题的关键与难点是找出线段之间的关系3、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【分析】(1)根据按步骤作图即可;(2)根据圆周角定理进行证明即可【详解】解:(1)如图所示,(2)证明:连接
19、PC,BDABAC,点C在A上BCBD,BAC=BADBACCAD 点D,P在A上,CPDCAD(圆周角定理) (填推理的依据)APCBAC故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【点睛】本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键4、(1)相切,见解析(2)【分析】(1)连接OC、OD、AC,OC交AF于点M,根据AGCG,CDAB,可得,从而OCAF,再由AFB90,可得CHAF,即可求证;(2)先证明四边形CMFH为矩形,可得OCAF,CMHF2,从而得到AMFM,进而得到OMBF2,可得到CMOM,进而得到 OC=4,AM垂直平分O
20、C,可证得AOC为等边三角形,即可求解(1)解: CH与O相切理由如下:如图,连接OC、OD、AC,OC交AF于点M, AGCG,ACGCAG,CDAB,OCAF,AB为直径,AFB90,BHCH,CHAF,OCCH,OC为半径,CH为O的切线;(2)解:由(1)得:BHCH,OCCH,OCBH,CHAF,四边形CMFH为平行四边形,OCCH,OCH=90,四边形CMFH为矩形,OCAF,CMHF2,AMFM,点O为AB的中点,OMBF2,CM=OM,OC=4,AM垂直平分OC,ACAO,而AOOC,ACOCOA,,AOC为等边三角形,AOC60,AODAOC60,COD120,弧CD的长度为
21、【点睛】本题主要考查了圆的基本性质,垂径定理,切线的判定,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键5、(1)BCCF;证明见详解;见详解;(2)2AE2=4AG2+BE2证明见详解【分析】(1)如图所示,BCCF根据将线段AE逆时针旋转90得到线段AF,得出AE=AF,EAF=90,可证BAECAF(SAS),得出ABE=ACF=45,可得ECF=ACB+ACF=45+45=90即可;根据ADBC,BCCF可得ADCF,可证BDGBCF,可得,得出即可;(2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分BAC,可得BAD=CAD=,可证BA
22、GBHF,得出HF=2AG,再证AECAFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可【详解】解:(1)如图所示,BCCF将线段AE逆时针旋转90得到线段AF,AE=AF,EAF=90,EAC+CAF=90,BAE+EAC=90,ABC=ACB=45,BAE=CAF,在BAE和CAF中,BAECAF(SAS),ABE=ACF=45,ECF=ACB+ACF=45+45=90,BCCF;ADBC,BCCFADCF,BDG=BCF=90,BGD=BFC,BDGBCF,ADBC,BD=DC=,BG=GF;(2)2AE2=4AG2+BE2延长BA交CF延长线于H,ADBC,AB=AC,AD平分BAC,BAD=CAD=,BG=GF,AGHF,BAG=H=45,AGB=HFB,BAGBHF,HF=2AG,ACE=45,ACE =H,EAC+CAF=90,CAF+FAH=90,EAC=FAH,在AEC和AFH中,AECAFH(AAS),EC=FH=2AG,在RtAEF中,根据勾股定理,在RtECF中,即【点睛】本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键