《2022年精品解析京改版八年级数学下册第十四章一次函数月考试题.docx》由会员分享,可在线阅读,更多相关《2022年精品解析京改版八年级数学下册第十四章一次函数月考试题.docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一次函数y=kx+b的图象经过点A(2,0),且当x2时,y0,则该函数图象所经过的象限为()A一、二、三B二、
2、三、四C一、三、四D一、二、四2、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1y2,则k的值可能是( )Ak=0Bk=1Ck=2Dk=33、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为()A2B-1C-2D44、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,2),按这样的运动规律,动点P第2021次运动到点( )A(2020,2)B(2020,1)C(2021,1)D(2021,2)5、如图,l1反映了某公司产品的销售收入与
3、销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )A小于12件B等于12件C大于12件D不低于12件6、正比例函数y=mx的图象经过点(-1,2),那么这个函数的解析式为( )Ay=xBy=xCy=2xDy=-2x7、直线yax+a与直线yax在同一坐标系中的大致图象可能是()ABCD8、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )Ay=n(+0.6)By=n()+0.6Cy=n(+0.6)Dy=n()+0.69、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米
4、)与行驶时间t(小时)之间的关系如图所示,下列四种说法:甲的速度为40千米/时;乙的速度始终为50千米/时;行驶1小时时,乙在甲前10千米处;甲、乙两名运动员相距5千米时,t =05或t =2或t =4,其中正确的是( )ABCD10、小亮从家步行到公交车站台,等公交车去学校图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系则小亮步行的速度和乘公交车的速度分别是( )A100 m/min,266m/minB62.5m/min,500m/minC62.5m/min,437.5m/minD100m/min,500m/min第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计
5、20分)1、请写出符合以下两个条件的一个函数解析式_过点(2,1),在第二象限内,y随x增大而增大2、对于直线y=kx+b(k0):(1)当k0,b0时,直线经过第_象限;(2)当k0,b0时,直线经过第_象限;(3)当k0时,直线经过第_象限;(4)当k0,b0时,直线经过第_象限3、点在直角坐标系的轴上,等于 _4、如图,函数和的图象相交于,则不等式的解集为_5、一次函数ykx+b的图象如图所示,当x满足 _时,y1三、解答题(5小题,每小题10分,共计50分)1、综合与探究:如图1,平面直角坐标系中,一次函数yx+3图象分别交x轴、y轴于点A,B,一次函数yx+b的图象经过点B,并与x轴
6、交于点C点P是直线AB上的一个动点(1)求A,B两点的坐标;(2)求直线BC的表达式,并直接写出点C的坐标;(3)请从A,B两题中任选一题作答我选择 题A试探究直线AB上是否存在点P,使以A,C,P为顶点的三角形的面积为18?若存在,求出点P的坐标;若不存在,说明理由;B如图2,过点P作x轴的垂线,交直线BC于点Q,垂足为点H试探究直线AB上是否存在点P,使PQBC?若存在,求出点P的坐标;若不存在,说明理由2、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x()有关当气温是0时,音速是331米/秒;当气温是5时,音速是334米/秒;当气温是10时,音速是337米/秒;当气温是15时
7、,音速是340米/秒;当气温是20时,音速是343米/秒;当气温是25时,音速是346米/秒;当气温是30时,音速是349米/秒(1)请你用表格表示气温与音速之间的关系(2)表格反映了哪两个变量之间的关系?哪个是自变量?(3)当气温是35时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?3、已知一次函数的图象平行于直线,且经过点求这个一次函数的解式4、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体如果约定“经度在前,纬度在后”,那么我们可以用
8、有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?5、已知函数y=(k-3)xk+2是正比例函数,求代数式k2-1的值-参考答案-一、单选题1、D【解析】【分析】根据题意画出函数大致图象,根据图象即可得出结论【详解】解:如图,一次函数y=kx+b的图象经过点A(2,0),且当x2时,y0,该函数图象所经过一、二、四象限,故选:D【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键2、A【解析】【分析】利用一次函数y随x的增大而减小,可得,即可求解【详解】当x1y2一次函数y=(k)x+2的y随x的增大而减小k
9、的值可能是0故选:A【点睛】本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出3、C【解析】【分析】首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可【详解】解:由题意得:x=1时,y=k+3,在x=1处,自变量增加2,函数值相应减少4,x=3时,函数值是k+3-4,3k+3=k+3-4,解得:k=-2,故选C【点睛】此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值4、B【解析】【分析】观察图形可知,每4次运动为一个循
10、环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可【详解】解:点的运动规律是每运动四次向右平移四个单位,动点第2021次运动时向右个单位,点此时坐标为,故选:B【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号5、C【解析】【分析】根据图象找出在的上方即收入大于成本时,x的取值范围即可【详解】解:根据函数图象可知,当时,即产品的销售收入大于销售成本,该公司盈利故选:C【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x的取值范围是本题的关键
11、6、D【解析】【分析】把点(-1,2)代入正比例函数y=mx即可求解【详解】解:正比例函数y=mx的图象经过点(-1,2),-m=2,m=-2,这个函数解析式为y=-2x故选:D【点睛】本题考查了待定系数法求正比例函数解析式,理解待定系数法,把点的坐标代入函数解析式是解题关键7、D【解析】【分析】若y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断【详解】解:A、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限
12、,所以A选项不符合题意;B、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;C、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;D、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;故选D【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k0)的图象为一条直线,当k0,图象过第一、三象限;当k0,图象过第二、四象限;直线与y轴的交点坐标为(0,b)8、A【解析】【分析】由题意可得每本书的价格为元
13、,再根据每本书需另加邮寄费6角即可得出答案;【详解】解:因为用m元钱在网上书店恰好可购买100本书,所以每本书的价格为元,又因为每本书需另加邮寄费6角,所以购买n本书共需费用y=n(+0.6)元;故选:A【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键9、D【解析】【分析】分析图像上每一段表示的实际意义,再根据行程问题计算即可【详解】甲的速度为,故正确;时,已的速度为,后,乙的速度为,故错误;行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;由得:甲的函数表达式为:,已的函数表达为:时,时,时,甲、乙两名运动员相距,时,甲、乙
14、两名运动员相距,时,甲、乙两名运动员相距为,故正确故选:D【点睛】本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解10、D【解析】【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度【详解】解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;公交车(3016)min走了(81)km,故公交车的速度为700014500m/min故选:D【点睛】本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的
15、意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一二、填空题1、(答案不唯一)【解析】【分析】根据一次函数的性质,即可求解【详解】解:根据题意得:符合条件的函数是一次函数,且自变量的系数小于0,过点(-2,1)如 等故答案为: (答案不唯一)【点睛】本题主要考查了书写一次函数的解析式,熟练掌握一次函数的性质是解题的关键2、 一、二、三 一、三、四 一、二、四 二、三、四【解析】【分析】当k0时,直线必过一、三象限,k0时,直线必过一、二象限,b0时,直线过一、三象限,b0时,直线过一、二象限,则直线经过第一、二、三象限;故答案为:一、二、三(2)当k0时,直线过一、
16、三象限,b0时,直线过三、四象限,则直线经过第一、三、四象限;故答案为:一、三、四(3)当k0时,直线过一、二象限,则直线经过第一、二、四象限;故答案为:一、二、四(4)当k0时,直线过二、四象限,b0时,直线过三、四象限,则直线经过第二、三、四象限故答案为:二、三、四【点睛】本题考查了一次函数的图象与性质,b的几何意义,关键是数形结合3、-1【解析】【分析】让纵坐标为0得到m的值,计算可得点P的坐标【详解】解:点P(3,m+1)在直角坐标系x轴上,m+1=0,解得m=-1,故选:-1【点睛】考查点的坐标的确定;用到的知识点为:x轴上点的纵坐标为04、【解析】【分析】观察函数图象得到,当时,直
17、线都在直线的下方,于是可得到不等式的解集【详解】解:由图象可知,在点A左侧,直线的函数图像都在直线的函数图像得到下方,即当时,不等式的解集为,故答案为:【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合5、【解析】【分析】直接利用函数的图象确定答案即可【详解】解:观察图象知道,当x0时,y1,当x0时,y1,故答案为:x0【点睛】本题考查了函数的图象的知识,属于基础题,主要考查学生对一次函数
18、图象获取信息能力及对解不等式的考查三、解答题1、(1)(6,0),(0,3);(2)yx+3,(3,0);(3)选A,存在,点P的坐标为(2,4)或(14,4);选B,存在,点P的坐标为(2,+3)或(2,+3)【解析】【分析】(1)根据坐标轴上点的坐标特征求A点和B点坐标;(2)将B点坐标(0,3)代入一次函数yxb即可求解;(3)A过点P作PHx轴于H,设点P(x,x+3),则PH,根据SACPACPH18可得PH的值,即可求解B过点P作x轴的垂线,交直线BC于点Q,垂足为点H设点P(x,x+3),则Q(x,x3),根据PQBC列方程求解即可【详解】解:(1)当y0时,x+30,解得x6,
19、则A点坐标为(6,0);当x0时,yx+33,则B点坐标为(0,3);(2)将B点坐标(0,3)代入一次函数yx+b得:b3,直线BC的表达式为yx+3,当y0时,x+30,解得x3,则C点坐标为(3,0);(3)A过点P作PHx轴于H,设点P(x,x+3),PH,A点坐标为(6,0),C点坐标(3,0),AC9,SACPACPH9PH18,PH4,x+34,当x+34时,x2;当x+34时,x14,存在,点P的坐标为(2,4)或(14,4);B如图,过点P作x轴的垂线,交直线BC于点Q,垂足为点H设点P(x,x+3),则Q(x,x+3),PQ,B点坐标(0,3),C点坐标(3,0),OBOC
20、3,BC,PQBC,解得:x或,存在,点P的坐标为(2,+3)或(2,+3)【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积,勾股定理,待定系数法,用方程的思想解决问题是解本题的关键2、 (1)见解析;(2)两个变量是:传播的速度和温度,温度是自变量;(3) 352米/秒; (4) y=331+35x【解析】【分析】(1)根据题中数据列出表格(2)找出题中的两个变量(3)根据传播速度与温度的变化规律进而得出答案(4)结合(3)中发现得出两个变量之间的关系【详解】(1)列表如下:x()051015202530y(米/秒)331334337340343346349(2)两个变
21、量是:传播的速度和温度,温度是自变量(3) 根据表格中音速y(米/秒)随着气温x()的变化规律可知,当气温再增加5,音速就相应增加3米/秒,即为349+3=352(米/秒),当气温是35时,估计音速y可能是:352米/秒(4)根据表格中数据可得出:温度每升高5,传播的速度增加3,当x=0时,y=331,故两个变量之间的关系为: y=331+35x【点睛】本题考查了变量与常量以及函数表示方法,理解两个变量的变化规律是得出函数关系式的关键3、y=12x+2【解析】【分析】首先设出一次函数的解析式为,然后根据一次函数的图象平行于直线求出k的值,然后将点代入求解即可【详解】解:设一次函数的解析式为一次
22、函数的图象平行于直线,k=12, 一次函数的图象经过点A(2,3),3=122+b,b=2 一次函数的解析式为y=12x+2【点睛】此题考查了待定系数法求一次函数表达式,两条一次函数图像平行的性质,解题的关键是熟练掌握待定系数法求一次函数表达式4、东经116度,南纬38度可以表示为(116,38)【解析】【分析】根据“经度在前,纬度在后”的顺序,可以将东经116度,南纬38度用有序数对(116,38)表示【详解】解:由题意可知东经116度,南纬38度,可用有序数对(116,38)表示故东经116度,南纬38度表示为(116,38)【点睛】本题考察了用有序数对表示位置解题的关键在于读懂题意中给定的规则5、0【解析】【分析】根据正比例函数y=kx的定义条件:k为常数且k0,自变量指数为1,得出k值,代入代数式求解即可【详解】解:函数y=(k-3)xk+2是正比例函数,k+2=1且k-30,解得:k=-1,k2-1=(-1)2-1=0【点睛】本题考查了正比例函数的定义,熟知正比例函数的定义是解题关键