《2022年精品解析沪科版九年级数学下册第26章概率初步同步训练试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪科版九年级数学下册第26章概率初步同步训练试题(含详细解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件是必然事件的是()A抛一枚硬币正面朝上B若a为实数,则a20C某运动员射击一次击中靶心D明天一定是晴天2
2、、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B可以用试验次数累计最多时的频率作为概率的估计值C由此估计这种幼苗在此条件下成活的概率约为0.9D如果在此条件下再移植这种幼苗20000株,则必定成活18000株3、下列事件中,属于必然事件的是( )A小明
3、买彩票中奖B在一个只有红球的盒子里摸球,摸到了白球C任意抛掷一只纸杯,杯口朝下D三角形两边之和大于第三边4、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个搅拌均匀后,随机抽取一个小球,是红球的概率为( )ABCD5、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )ABCD6、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )ABCD7、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形
4、、长方形、圆、抛物线在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )ABCD8、下列事件中是不可能事件的是()A铁杵成针B水滴石穿C水中捞月D百步穿杨9、下列事件是必然发生的事件是( )A在地球上,上抛的篮球一定会下落B明天的气温一定比今天高C中秋节晚上一定能看到月亮D某彩票中奖率是1%,买100张彩票一定中奖一张10、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:游戏次数1002004001000频率0.320.340.3250.332甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙
5、:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”()A甲正确,乙错误B甲错误,乙正确C甲、乙均正确D甲、乙均错误第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为_2、小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,则小明正好穿的是相同的一双袜子的概率是_3、某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生
6、的概率是 _4、在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是_5、已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为 _三、解答题(5小题,每小题10分,共计50分)1、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中
7、随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率2、口袋里有除颜色外其它都相同的6个红球和4个白球(1)先从袋子里取出m()个白球,再从袋子里随机摸出一个球,将“摸出红球”记为事件A如果事件A是必然事件,请直接写出m的值如果事件A是随机事件,请直接写出m的值(2)先从袋子中取出m个白球,再放入m个一样的红球并摇匀,摸出一个球是红球的可能性大小是,求m的值3、2021年教育部出台了关于中小学生作业、睡眠、手机、读物、体质五个方面的管理,简称“五项管理”,这是推进立德树人,促进学生全面发展的重大举措某班为培养学生的阅读习惯,利用课外时间开展以“走近名著”为
8、主题的读书活动,有6名学生喜欢四大名著,其中2人(记为,)喜欢西游记),2人(记为,)喜欢红楼梦,1人(记为C)喜欢水浒传,1人(记为D)喜欢三国演义(1)如果从这6名学生中随机抽取1人担任读书活动宣传员,求抽到的学生恰好喜欢西游记的概率(2)如果从这6名学生中随机抽取2人担任读书活动宣传员,求抽到的学生恰好1人喜欢西游记1人喜欢红楼梦的概率4、 “双减”意见下,各级教育行政部门都对课后作业作了更明确的要求为了解某学校七年级学生课后作业时长情况,某部门针对某校七年级学生进行了问卷调查,调查结果分四类显示:A表示“40分钟以内完成”,B表示“4070分钟以内完成”,C表示“7090分钟以内完成”
9、,D表示“90分钟以上完成”根据调查结果,绘制成两种不完整的统计图请结合统计图,回答下列问题(1)这次调查的总人数是 人;(2)扇形统计图中,B类扇形的圆心角是 ;(3)在D类学生中,有2名男生和2名女生,再需从这4名学生中抽取2名学生作进一步访谈调查,请用树状图或列表的方法,求所抽2名学生恰好是1名男生和1名女生的概率5、防疫期间,全市所有学校都严格落实测体温进校园的防控要求某校开设了甲、乙、丙三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园(1)小明从乙测温通道通过的概率是_;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率-参考答案-一、单选
10、题1、B【分析】根据必然事件的定义对选项逐个判断即可【详解】解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;B、若a为实数,则a20,是必然事件,符合题意;C、某运动员射击一次击中靶心,是随机事件,不符合题意;D、明天一定是晴天,是随机事件,不符合题意,故选:B【点睛】本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键2、D【分析】根据频率估计概率逐项判断即可得【详解】解:A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确
11、;B可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D【点睛】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键3、D【分析】根据事件发生的可能性大小判断即可【详解】解;A、小明买彩票中奖是随机事件,不符合题意;B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;D、三角形两边之和大于第三边是必然事件,符合题意;故选:D【点睛】本题考查的是必
12、然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件4、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率【详解】解:共有5个球,其中红球有2个,P(摸到红球)=,故选:A【点睛】此题主要考查概率的意义及求法用到的知识点为:概率=所求情况数与总情况数之比5、B【分析】设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率【详解】解:设四张小图片分别用A,a,B,b表示,画树状图得:由图可得,共有12种等可能的结果,其中
13、摸取两张小图片恰好合成一张完整图片的结果共有4种,摸取两张小图片恰好合成一张完整图片的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键6、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:故选C【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.7、D【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、
14、圆,共4种,总数为6种在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键8、C【分析】根据随机事件,必然事件和不可能事件的定义,逐项即可判断【详解】A、铁杵成针,一定能达到,是必然事件,故选项不符合;B、水滴石穿, 一定能达到,是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,故选项符合;D、百步穿杨,不一定能达到,是随机事件,故选项不符合;故选:C【点睛】本题考查了随机事件,必然事件,不可能事件,解决本题的关键是正确理解必然事件、不可
15、能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件9、A【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案【详解】解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;B、明天的气温一定比今天的高,是随机事件,不符合题意;C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意故选:A【点睛】本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念
16、关键是理解必然事件指在一定条件下一定发生的事件10、C【分析】由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可【详解】由表可知该种结果出现的概率约为掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6向上的点数与4相差1有3、5掷一枚质地均匀的骰子,向上的点数与4相差1的概率为甲的答案正确又“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为乙的答案正确综上所述甲、乙答案均正确故选C【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率二、填空题1、【分析】从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标
17、号之和小于4的有3种情况,从而求得所求事件的概率【详解】从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1绿1,红1绿2,红2红3,红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1绿1,红1绿2,红2绿1故所求的概率为P=;故答案为:【点睛】本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题2、【分析】两双不同的袜子共有6种可能的组合,而穿的是同一双袜子的可能情况有2种,从而可求得概率【详解】第一双袜子的两只分别记为,第二袜子的两只分别记为,列出树状
18、图如下:两双不同的袜子共有12种可能的组合,是同一双袜子的可能情况有4种则小明正好穿的是相同的一双袜子的概率是故答案为:【点睛】本题考查了简单事件的概率,关键是根据题意求出事件的所有可能的结果及某事件发生的可能结果,则由概率计算公式即可求得概率3、【分析】先列表求解所有的等可能的结果数,再得到所选代表恰好为1名女生和1名男生的结果数,再利用概率公式进行计算即可.【详解】解:列表如下: 所以:所有的可能的结果数有种,刚好是1名女生和1名男生的结果数有8种,所以所选代表恰好为1名女生和1名男生的概率是: 故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解等可能事件的概率,掌握“画树状图或
19、列表的方法”是解本题的关键.4、【分析】画树状图,共有12个等可能的结果,摸到的两个球颜色红色的结果有2个,再由概率公式求解即可【详解】解:画树状图如图:共有12个等可能的结果,摸到的两个红球的有2种结果,摸到的两个红球的概率是,故答案为:【点睛】本题考查列表法或画树状图求概率,解题的关键是准确画出树状图或列出表格5、【分析】根据概率的公式,即可求解【详解】解:根据题意得:这个球是白球的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键三、解答题1、【分析】用A、B
20、、C、D分别表示化学、生物、地理、政治,然后画出树状图求解【详解】解:用A、B、C、D分别表示化学、生物、地理、政治,画树状图如下,由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即2、(1)4;1或2或3;(2)【分析】(1)根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,即可求解; 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球
21、,可得此时有白球 1个或2个或3个,即可求解;(2)根据题意得:所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为 再根据概率公式,即可求解【详解】解:(1)根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球, ; 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球, 此时有白球 1个或2个或3个,即m的值为1或2或3;(2)所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为根据题意得:,【点睛】本题主要考查了必然事件和随机事件定义,求概率,熟练掌握必然事件指在一定条件下一定发生
22、的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,概率公式是解题的关键3、(1)抽到的学生恰好喜欢西游记的概率为;(2)抽到的学生恰好1人喜欢西游记1人喜欢红楼梦的概率为【分析】(1)根据题意及概率公式可直接进行求解;(2)根据题意列出表格,然后问题可求解【详解】解:(1)由题意得:抽到的学生恰好喜欢西游记的概率为;(2)由题意可得列表如下:CD/C/D/由表格可知共有30种等可能的情况,其中恰好1人喜欢西游记1人喜欢红楼梦的可能性有8种,抽到的学生恰好1人喜欢西游记1人喜欢红楼梦的概率为【点睛】本题主要考查概率,熟练掌握利用列表法求解概率是解题的关键4、(1)40;(
23、2)108;(3)【分析】(1)根据A类别人数及其所占百分比可得被调查的总人数;(2)用360乘以B类别人数所占比例即可;(3)画树状图,共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果数为8种,再根据概率公式求解即可【详解】解:(1)参加这次调查的学生总人数为615%=40(人);故答案为:40;(2)扇形统计图中,B部分扇形所对应的圆心角是360=108,故答案为:108;(3)画树状图为:共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果为8种,所抽取的2名学生恰好是1名男生和1名女生的概率为【点睛】本题考查了列表法与树状图法,正确画树状图是解题的关键,用到的知识点
24、为:概率=所求情况数与总情况数之比也考查了统计图5、(1);(2)【分析】(1)根据题意直接利用概率公式求解即可得出答案;(2)由题意先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式进行计算可得【详解】解:(1)小明从乙测温通道通过的概率是,故答案为:;(2)列表格如下:甲乙丙甲甲,甲乙,甲丙,甲乙甲,乙乙,乙丙,乙C甲,丙乙,丙丙,C由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,所以小明和小丽从同一个测温通道通过的概率为.【点睛】本题考查的是用列表法或画树状图法求概率注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比