《2022年精品解析北师大版七年级数学下册第五章生活中的轴对称必考点解析试题(精选).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版七年级数学下册第五章生活中的轴对称必考点解析试题(精选).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,属于轴对称图形的是( )ABCD2、下列图形中,不是轴对称图形的是( )ABCD3、如图,直线MN是
2、四边形MANB的对称轴,点P在MN上则下列结论错误的是( )AAMBMBAPBNCANMBNMDMAPMBP4、如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C、D若DEF,用含的式子可以将CFG表示为()A2B90+C180D18025、下列图形中不是轴对称图形的是( )ABCD6、以下是四个我国杰出企业代表的标志,其中是轴对称图形的是( )ABCD7、下列说法正确的是( )A轴对称图形是由两个图形组成的B等边三角形有三条对称轴C两个等面积的图形一定轴对称D直角三角形一定是轴对称图形8、甲骨文是我国的一种古代文字,下列甲骨文中,不是轴对称的是( )ABCD9、下列图案属于轴对称图形
3、的是( )ABCD10、现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性下列汉字是轴对称图形的是( )A喜B欢C数D学第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,将其折叠,是点落在边上的点,折痕为(1)的度数为_(2)的度数为_2、如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点落在BAC的内部,若CAE=2,且=15,则DAE的度数为_3、汉字中、日、田等都可看作是轴对称图形,请你再写出一个这样的汉字:_4、将一张长方形纸片按如图所示的方式折叠,BE、BD为折痕若与重合,则EBD为_度5、如图,腰长为22的等腰ABC中,顶角A4
4、5,D为腰AB上的一个动点,将ACD沿CD折叠,点A落在点E处,当CE与ABC的某一条腰垂直时,BD的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点网格中有一个格点ABC(即三角形的顶点都在格点上)(1)在图中画出A1B1C1,使它与ABC关于直线l对称;(2)在直线l上找一点P,使得PA+PC最小;(3)ABC的面积为 2、已知在纸面上画有一数轴,如图所示(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-3的点与表示 的点重合;(直接写出答案)(2)折叠纸面,使表示-1的点与表示3的点重合,则表示100
5、的点与表示数 的点重合;(直接写出答案)(3)已知在数轴上点A表示的数是a,将点A移动10个单位得到点B,此时点B表示的数和a是互为相反数,求a的值3、(1)已知:如图(甲),等腰三角形的一个内角为锐角,腰为a,求作这个等腰三角形;(2)在(1)中,把锐角变成钝角,其他条件不变,求作这个等腰三角形4、如图,把下列图形补成关于直线l对称的图形5、如图,在ABC中,ABAC,D是BC的中点,DEAB,DFAC,E,F为垂足求证:DEDF-参考答案-一、单选题1、A【分析】根据轴对称的定义,把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称图形判断即可;【详解】根据轴
6、对称图形的定义可知,是轴对称图形;故选A【点睛】本题主要考查了轴对称图形的识别,准确分析判断是解题的关键2、A【详解】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键3、B【分析】根据轴对称的性质可以得到AM=BM,ANM=BNM,MAP=MBP,由此即可得到答案【详解】解:直线MN是四边形MANB的对称轴,AM=BM,ANM=B
7、NM,MAP=MBP,故A、C、D选项不符合题意;根据现有条件,无法推出AP=BN,故B选项符合题意;故选B【点睛】本题主要考查了轴对称图形的性质,解题的关键在于能够熟练掌握轴对称图形的性质:成轴对称图形的两个图形全等,如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线4、D【分析】由平行线的性质得,由折叠的性质得,计算即可得出答案【详解】四边形ABCD是矩形,长方形纸带沿EF折叠,故选:D【点睛】本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键5、C【分析】根据称轴的定义进行分析即可【详解】解:A是轴对称图形,故本选项不符合题意;B是轴对称图形,故本选项不符
8、合题意;C不是轴对称图形,故本选项符合题意;D是轴对称图形,故本选项不符合题意;故选:C【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合6、B【详解】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键7、B【分析】根据轴对称图形的定义逐一进行判定解答【详解】解:A、轴对称图形可以是1个图形
9、,不符合题意;B、等边三角形有三条对称轴,即三边垂直平分线,符合题意;C、两个等面积的图形不一定轴对称,不符合题意;D、直角三角形不一定是轴对称图形,不符合题意故选:B【点睛】本题考查轴对称图形的定义与性质,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形折痕所在的这条直线叫做对称轴8、D【分析】根据轴对称图形的概念分别判断得出答案【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意;故选:D【点睛】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折
10、叠,如果图形的两部分能够重合,那么这个是轴对称图形9、C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合10、A【分析】利用轴对称图形的概念可得答案【详解】解:A、是轴对称图形,故此选项合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选
11、项不合题意;D、不是轴对称图形,故此选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形二、填空题1、 【分析】(1)根据折叠前后对应角相等即可得解;(2)先求出,再利用三角形外角定理计算即可;【详解】(1)将折叠后,是点落在边上的点,折痕为,;故答案是:(2),由(1)得:,;故答案是:【点睛】本题主要考查了直角三角形的性质,图形的折叠,三角形外角定理,准确计算是解题的关键2、【分析】由折叠的性质可知,再根据长方形的性质可知,结合题意整理即可求出的大小,从而即可求出的大小【详解】根据折叠的性质可知,
12、由长方形的性质可知,即,故答案为:【点睛】本题考查矩形的性质,折叠的性质利用数形结合的思想是解答本题的关键3、一(答案不唯一)【分析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此解答即可【详解】解:由轴对称图形的定义可得:一、二、三、甲、出、本、王、平都是轴对称图形故答案为:一(答案不唯一)【点睛】此题主要考查了轴对称图形,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合4、90【分析】根据折叠的性质和平角的定义即可得到结论【详解】解:由折叠可知,ABE=ABE=ABA,CBD=CBD=CB
13、C,DBE=ABE+CBD=ABA+CBC=(ABA+CBC)=180=90故答案为:90【点睛】本题考查了角的计算,折叠的性质,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系5、或2【分析】分两种情况:当CEAB时,设垂足为M,在RtAMC中,A45,由折叠得:ACDDCE22.5,证明BCMDCM,得到BMDM,证明MDE是等腰直角三角形,即可得解;当CEAC时,根据折叠的性质,等腰直角三角形的判定与性质计算即可;【详解】当CEAB 时,如图,设垂足为M,在RtAMC中,A45,由折叠得:ACDDCE22.5,等腰ABC中,顶角A45,BACB67.5,BCM22.
14、5,BCMDCM,在BCM和DCM中,BCMDCM(ASA),BMDM,由折叠得:EA45,ADDE,MDE是等腰直角三角形,DMEM,设DMx,则BMx,DEx,ADxAB22,2xx22,解得:x,BD2x2;当CEAC时,如图,ACE90,由折叠得:ACDDCE45,等腰ABC中,顶角A45,EA45,ADDE,ADCEDC90,即点D、E都在直线AB上,且ADC、DEC、ACE都是等腰直角三角形,ABAC22,ADAC2,BDABAD(22)(2),综上,BD的长为或2故答案为:或2【点睛】本题主要考查折叠的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,注重分类讨论思想的运
15、用是解题的关键三、解答题1、(1)见解析;(2)见解析;(3)5【分析】(1)分别作出点A,B,C关于y轴的对称点,再顺次连接即可得;(2)连接AC1,与直线l的交点即为所求;(3)利用割补法求解可得【详解】解:(1)如图所示,A1B1C1即为所求(2)连接AC1,则AC1与l的交点P即为所求的点(3)ABC的面积=341422235,故答案为:5【点睛】此题主要作图轴对称变换,关键是正确确定组成图形的关键点的对称点位置及轴对称变换的性质,割补法求三角形的面积2、(1)3;(2)-98;(3)的值为5或-5【分析】(1)根据对称的知识,若1表示的点与-1表示的点重合,则对称中心是原点,从而找到
16、-3的对称点;(2)由表示1的点与表示3的点重合,可确定对称中心是表示1的点,则表示100的点与对称中心距离为99,与左侧与对称中心距离为99的点重合;(3)分两种情况分析,若A往左移10个单位得,若A往右移10个单位得【详解】(1)根据题意,得对称中心是原点,则3表示的点与数3表示的点重合,故答案为:3;(2)表示-1的点与表示3的点重合,表示100的点与表示数-98的点重合;(3)若A往左移10个单位得,根据题意得.解得:.若A往右移10个单位得,根据题意得:,解得:.答:的值为5或-5【点睛】此题考查数轴上的点和数之间的对应关系,结合数轴,找到对称中心是解决问题的关键3、(1)答案见解析
17、;(2)答案见解析【分析】(1)分成是顶角和顶角两种情况进行讨论,当是底角时,首先作一个A,在一边上截取ABa,然后过B作另一边的垂线BR,然后在AR的延长线上截取RCAR,连接BC,即可得到三角形,当是顶角时,作D,在角的两边上截取DEDFa,则DEF就是所求三角形;(2)作M,在角的边上截取MNMH,则MNH就是所求【详解】(1)如图所示:ABC和DEF都是所求的三角形;(2)如图所示:MNH是所求的三角形【点睛】本题考查了三角形的作法,正确进行讨论,理解等腰三角形的性质:三线合一定理,是关键4、见解析【分析】根据轴对称图形的性质,先找出各关键点关于直线l的对称点,再顺次连接即可【详解】解:关于直线l对称的图形如图所示 【点睛】本题考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质,几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始5、见解析【分析】根据等腰三角形的性质得到B=C,运用AAS证明DEBDFC即可【详解】ABAC,D是BC的中点,B=C,DB=DC,DEAB,DFAC,BED=CFD=90,DEBDFC(AAS),DE=DF【点睛】本题考查了等腰三角形的性质,三角形的全等判定和性质,熟练掌握全等三角形的判定定理和性质是解题的关键