《最新强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专题测试试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《最新强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专题测试试题(含答案解析).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章一元一次不等式和一元一次不等式组专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的不等式组只有四个整数解,则实数a的取值范围( )A3a2B3a2C3a2D3a22、如图,一次函数
2、(为常数,且)的图像经过点,则关于的不等式的解集为( )ABCD3、不等式4x-80的解集是( )Ax-2Bx-2Cx2Dx24、一次函数y1kx+b与y2mx+n的部分自变量和对应函数值如表:x21012y112345x21012y252147则关于x的不等式kx+bmx+n的解集是()Ax0Bx0Cx1Dx15、如图,一次函数ykxb(k,b为常数,k0)经过点A(3,2),则关于x的不等式中k(x1)b2的解集为( )Ax2Bx2Cx3Dx36、解集在数轴上表示为如图所示的不等式的是( )ABCD7、如果点P(m,12m)在第一象限,那么m的取值范围是 ( )ABCD8、下列说法正确的是
3、( )A若ab,则3a2bB若ab,则ac2bc2C若2a2b,则abD若ac2bc2,则ab9、如果ab,下列各式中正确的是( )A2021a2021bB2021a2021bCa2021b2021D2021a2021b10、若,那么下列各式中正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组所有整数解的和是_2、已知关于x、y的二元一次方程组的解满足xy,且关于x的不等式组无解,那么所有符合条件的整数a的和为 _3、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_4、若不等式(m
4、3)xm3,两边同除以(m3),得x1,则m的取值范围为_5、不等式组 的解集是_三、解答题(5小题,每小题10分,共计50分)1、(1)若xy,比较3x+5与3y+5的大小,并说明理由;(2)解不等式组:,并把它的解集在数轴上表示出来2、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?3、利用不等式的性质,将下列不等式转化为“ya”或“
5、ya”的形式(1)5y-50(2)3y-126y(3)y-2y-54、(1)解方程组: (2)解不等式组5、三角形的三边长分别是2,x,10,且正偶数x满足不等式,求该三角形的周长-参考答案-一、单选题1、C【分析】先求出不等式解组的解集为,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案【详解】解:解不等式得;解不等式得;不等式组有解,不等式组的解集是,不等式组只有4个整数解,不等式组的4个整数解是:1、0、-1、-2,故选C【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法2、A【分析】根据图像的意义当x
6、=-3时,kx+b=2,根据一次函数的性质求解即可【详解】解:当x=-3时,kx+b=2,且y随x的增大而减小,不等式的解集,故选A【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键3、D【分析】根据题意先移项,再把x的系数化为1即可得出答案【详解】解:不等式4x-80,移项得,4x8,把x的系数化为1得,x2故选:D【点睛】本题考查的是解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解答此题的关键4、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断【详解】解:根据表可得y1kx+b中y随x的增大而增大
7、;y2mx+n中y随x的增大而减小,且两个函数的交点坐标是(1,2)则当x1时,kx+bmx+n故选:D【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键5、A【分析】根据一次函数图象平移规律可得函数y=kx+b图像向右平移1个单位得到平移后的解析式为y=k(x1)+b,即可得出点A平移后的对应点,根据图象找出一次函数y=k(x1)+b的值小于2的自变量x的取值范围,据此即可得答案【详解】解:函数y=kx+b图像向右平移1个单位得到平移后的解析式为y=k(x-1)+b,A(3,2)向右平移1个单位得到对应点为(2,2),由图象可知,y随x的增大而减小,
8、关于的不等式的解集为,故选:A【点睛】本题考查一次函数的性质、一次函数图象的平移及一次函数与不等式,正确理解函数的性质、会观察图象,熟练掌握平移规律是解题的关键6、C【分析】根据数轴可以得到不等式的解集【详解】解:根据不等式的解集在数轴上的表示,向右画表示或,空心圆圈表示,故该不等式的解集为x2;故选C【点睛】本题要考查的是在数轴上表示不等式的解集,运用数形结合的思想是本题的解题关键7、A【分析】根据第一象限的横坐标为正、纵坐标为负,列出关于m的不等式组解答即可【详解】解:P(m,12m)在第一象限, ,解得:故选A【点睛】本题主要考查了解一元一次不等式组、平面直角坐标系等知识点,根据点在平面
9、直角坐标系的象限列出关于m的一元一次不等式组成为解答本题的关键8、D【分析】利用不等式的性质,即可求解【详解】解:A、若ab,则3a3b,故本选项错误,不符合题意; B、若ab,当c0时,则ac2bc2,故本选项错误,不符合题意; C、若2a2b,则ab,故本选项错误,不符合题意; D、若ac2bc2,则ab,故本选项正确,符合题意; 故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键9、C【分析】根据不等式的性质即可求出答案【详解】解:A、ab,2021a2021b,故A错误;B、ab,2021a2021b,故B错误;C、ab,a2021b2021,故C正确;D、a
10、b,2021a2021b,故D错误;故选:D【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型10、C【分析】根据不等式的性质判断【详解】解:,a+1b+1,故选项A错误;,-a-b,故选项B错误;,故选项C正确;,故选项D错误;故选:C【点睛】此题考查了不等式的性质,熟记不等式的性质是解题的关键二、填空题1、-3【分析】分别解不等式得到不等式组的解集,确定整数解得到答案【详解】解: ,解不等式,得,解不等式,得,不等式组的解集为,整数解为:-3、-2、-1、0、1、2,-3-2-1+0+1+2=-3,故答案为:-3【点睛】此题考查求不等式组的整数解,有理数的加减法,解
11、不等式,熟练掌握解不等式的解法是解题的关键2、【分析】解二元一次方程组,根据xy列出不等式,即可求得,解不等式组,根据不等式组无解求得,进而根据题意求得符合条件的整数,求和即可【详解】解:+得解得,将代入得:解得解得由解不等式得:解不等式得:不等式组无解解得则所有符合条件的整数a为:,其和为故答案为:7【点睛】本题考查了解二元一次方程组,解一元一次不等式组,求不等式组的整数解,根据题意求得符合题意的整数是解题的关键3、5或6【分析】设共有间宿舍,则共有个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可【详解】解:设共有间宿舍,则共有个学生,依题意得:,解得:又为正整数,
12、或6故答案为:5或6【点睛】本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解4、【分析】根据不等式的性质可知,求解即可【详解】解:不等式(m3)xm3,两边同除以(m3),得x1,解得:,故答案为:【点睛】本题考查了不等式的基本性质,熟知不等式两边同时乘或除一个负数,不等式的符号要改变,是解本题的关键5、1x2【分析】先求出每个一元一次不等式的解集,再求出它们公共部分的解集即可【详解】解:,解得:x2,解得:x1,该不等式组的解集为1x2,故答案为:1x2【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,正确得出公共部分的解集是解答的关
13、键三、解答题1、(1)3x+53y+5;(2)1x2,数轴上表示见解析【分析】(1)先在xy的两边同乘以3,变号,再在此基础上同加上5,不变号,即可得出结果;(2)分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可【详解】解:(1)xy,不等式两边同时乘以3得:(不等式的基本性质3)3x3y,不等式两边同时加上5得:53x53y;3x+53y+5;(2),解不等式,得x2,解不等式,得x1,原不等式组的解集为:1x2,在数轴上表示不等式组的解集为:【点睛】主要考查了不等式的基本性质和解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的
14、关键2、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【分析】(1)设购买一副跳棋和一副军棋各需要x元、y元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m副军棋,则购买副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可【详解】解:(1)设购买一副跳棋和一副军棋各需要x元、y元,由题意得:,解得,购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m副军棋,则购买副跳棋,由题意得:,即,解得,学校最多可以买30副军棋,答:学校最多可以买30
15、副军棋【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解3、(1)y1(2)y-4(3)y3【分析】根据不等式的性质转换即可(1)原式为5y-50两边都加上5得5y5两边除以5得y1(2)原式为3y-126y两边都加上12-6y得-3y12两边都除以-3得y-4(3)原式为y-2y-5两边都加上2y得-y-3两边都除以-1得y3【点睛】本题考查了不等式的性质,不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.即若,则,;性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.,即;性质3:不等式两边乘(或除以
16、)同一个负数,不等号的方向改变,即4、(1);(2)2x3【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)+5得:27x=23+175,解得:x=4,将x=4代入中,得:20y=17,解得:y=3,原方程组的解为 (2) ,解:解得:x2, 解得:x3, 不等式组的解集为:2x3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键5、22【分析】先求出不等式的解集,再根据x是符合条件的正整数判断出x的可能值,再由三角形的三边关系求出x的值即可【详解】解:原不等式可化为5(x+1)20-4(1-x),解得x11,x是它的正整数解,根据三角形第三边的取值范围,得8x12,x是正偶数,x=10第三边的长为10,这个三角形的周长为10+10+2=22【点睛】本题综合考查了求不等式特殊解的方法及三角形的三边关系,正确解不等式,求出解集是解答本题的关键解不等式应根据不等式的基本性质