2022年强化训练沪科版九年级数学下册第26章概率初步专题测试练习题(精选).docx

上传人:知****量 文档编号:28183665 上传时间:2022-07-26 格式:DOCX 页数:22 大小:346.42KB
返回 下载 相关 举报
2022年强化训练沪科版九年级数学下册第26章概率初步专题测试练习题(精选).docx_第1页
第1页 / 共22页
2022年强化训练沪科版九年级数学下册第26章概率初步专题测试练习题(精选).docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2022年强化训练沪科版九年级数学下册第26章概率初步专题测试练习题(精选).docx》由会员分享,可在线阅读,更多相关《2022年强化训练沪科版九年级数学下册第26章概率初步专题测试练习题(精选).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第26章概率初步专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同若从中随机摸出一个球,则摸出的一个球是黄球的概

2、率为( )ABCD2、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:游戏次数1002004001000频率0.320.340.3250.332甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”()A甲正确,乙错误B甲错误,乙正确C甲、乙均正确D甲、乙均错误3、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6下列判断正确的是( )A(1)(2)都是随机事件B(1)(2)都是必然事

3、件C(1)是必然事件,(2)是随机事件D(1)是随机事件,(2)是必然事件4、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球则随机摸出一个红球的概率为()ABCD5、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为( )ABCD6、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项检测要求三选一,并且采取抽签方式取得,那

4、么他们两人都抽到跳远的概率是( )ABCD7、下列事件中,属于随机事件的是( )A用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形B用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形C如果一个三角形有两个角相等,那么两个角所对的边也相等D有两组对应边和一组对应角分别相等的两个三角形全等8、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同则在下列说法中正确的是( )A无放回的从中连续摸出三个红球是随机事件B从中摸出一个棕色球是随机事件C无放回的从中连续摸出两个白球是不可能事件D从中摸出一个红色球是必然事件9、抛掷一枚质地均匀的硬币三

5、次,恰有两次正面向上的概率是( )ABCD10、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是( )A1BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别从袋子中随机取出1个球,则它是黑球的概率是_2、一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为 _个3、在不透明的口袋里装有4个黑色棋子和若干白色棋子,每个棋

6、子除颜色外完全相同从口袋里随机摸出一个棋子,摸到黑球的概率是,则白色棋子个数为_4、一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无差别,从中随机摸出一个小球,则摸到的是红球的概率为_5、从1、1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是_三、解答题(5小题,每小题10分,共计50分)1、小明每天骑自行车上学,都要通过安装有红、绿灯的4个十字路口假设每个路口红灯和绿灯亮的时间相同(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率(请用“画树状图”或“列表”或“列举”等方法给出分析过程)(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯

7、的概率为 (请直接写出答案)2、新冠病毒在全球肆虐,疫情防控刻不容缓某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分)学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计下面提供了部分信息抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5抽取的40名学生成绩分析表:年级七年级八年级平均分88.1众 数8b中位数a8方 差1.91.89请根据以上信息,解答下列问题:(1)直接写出上表中a,b的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低

8、于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率3、从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:试验次数4080120160200240280320360400出现方块的次数1118a404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.2530.250(1)将数据表a、b补充完整;(2)从上表中可以估计出现方块的概率是_;(3)从这副

9、扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗匀后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢你认为这个游戏对双方是公平的吗若不是,有利于谁请你用概率知识(列表或画树状图)加以分析说明4、为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示请根据图表信息解答下列问题:组别分数段(分)频数频率A组60x70300.1B组70x8090nC组80x90m0.4D组90x100600.2(1)在表中:m ,n ;(2)补全频数

10、分布直方图;(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明5、如图是甲、乙两个可以自由转动且质地均匀的转盘,甲转盘被分成三个大小相同的扇形,分别标有1,2,3;乙转盘被分成四个大小相同的扇形,分别标有1,2,3,4,指针的位置固定,转动转盘直至它自动停止(若指针正好指向扇形的边界,则重新旋转转盘,直至指针指向扇形内部)(1)转动甲转盘,指针指向3的概率是 ;(2)利用列表或画树状图的方法求转动两个转盘指针指向的两个数字和是5的概率-参考答案-一、单选

11、题1、C【分析】根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,随机抽取一个球是黄球的概率是故选C【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比得到所有符合条件的情况数是解决本题的关键2、C【分析】由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可【详解】由表可知该种结果出现的概率约为掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6向上的点数与4相差1

12、有3、5掷一枚质地均匀的骰子,向上的点数与4相差1的概率为甲的答案正确又“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为乙的答案正确综上所述甲、乙答案均正确故选C【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率3、D【分析】必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.【详解】解:事件(1):购买1张福利彩票,中奖,是随机事件,事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,故

13、选D【点睛】本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.4、D【分析】在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率【详解】解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,红球有:个, 则随机摸出一个红球的概率是:故选:D【点睛】本题主要考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比5、C【分析】根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率【详解】解:将作业、睡眠、手

14、机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:业睡机读体业(业,睡)(业,机)(业,读)(业,体)睡(睡,业)(睡,机)(睡,读)(睡,体)机(机,业)(机,睡)(机,读)(机,体)读(读,业)(读,睡)(读,机)(读,体)体(体,业)(体,睡)(体,机)(体,读)根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种, 抽到“作业”和“手机”的概率为:,故选:C【点睛】题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键6、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率【详解】解:分别记跳远为

15、“跳”,坐位体前屈为“坐”,握力为“握”,列表如下:跳坐握跳(跳,跳)(跳,坐)(跳,握)坐(坐,跳)(坐,坐)(坐,握)握(握,跳)(握,坐)(握,握)由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键7、D【分析】根据三角形三边关系判断A选项;根据勾股定理判断B选项;根据等腰三角形的性质:等边对等角判断C选项;根据全等三角形的判定即可判断D选项【详解】A.因为,所以用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形为不可能事件,故此选项错误;B.

16、因为满足勾股定理,所以用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形为必然事件,故此选项错误;C.因为三角形有两个角相等则这个三角形是等腰三角形,故等腰三角形等角对等边,所以如果一个三角形有两个角相等,那么两个角所对的边也相等为必然事件,故此选项错误;D.根据SAS可以判断两三角形全等,但ASS不能判断两三角形全等,所以有两组对应边和一组对应角分别相等的两个三角形全等为随机事件,故此选项正确故选:D【点睛】本题考查随机事件,随机事件可能发生也可能不发生,必然事件一定发生,不可能事件一定不发生,掌握随机事件的定义是解题的关键8、A【分析】随机事件是在一定条件下,可能发

17、生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可【详解】无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确故选A【点睛】本题考查随机事件,必然事件,不可能事件,掌握事

18、件识别方法与分类标准是解题关键9、C【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:列树状图如下所示: 根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,恰好有两次正面朝上的事件概率是:故选C【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图10、B【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二

19、次方程,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关于x的方程为一元二次方程的概率是,故选择B【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键二、填空题1、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球3个从中任意摸出一球,摸出白色球的概率是故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键2、【分析】先由频率频数数据总数计算出频率,再由题意列出方程求解即可【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋中大约有x个白球,则,解得x20

20、,经检验x20是原方程的解,估计口袋中白球的个数约为20个故答案为:20【点睛】本题考查了用频率估计概率大量反复试验下频率稳定值即概率关键是得到关于黑球的概率的等量关系3、12【分析】设白色棋子有x个,根据概率公式列方程求解即可【详解】解:设白色棋子有x个,根据题意得:,解得:x=12,经检验x=12是原方程的根,故答案为:12【点睛】本题考查了分式方程的应用,以及概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数4、【分析】将红球的个数除以球的总个数即可得【详解】解:根据题意,摸到的不是红球的概率为,答案为:【点睛】本题考查了概率公式:随机事件A的概率P(A)

21、=事件A可能出现的结果数除以所有可能出现的结果数5、【分析】根据题意列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率【详解】解:列表得: -110-1-(1,-1)(0,-1)1(-1,1)-(0,1)0(-1,0)(1,0)-所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率.故答案为:【点睛】本题考查列表法与树状图法和点的坐标特征,注意掌握通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率三、解答题1、(1),见解析(2)【解析】(1)列表如下第一个十字路口第

22、二个红灯绿灯红灯红红红绿绿灯绿红绿绿共有4种等可能情形,满足条件的有1种通过前2个十字路口时都是绿灯的概率(2)画树状图如图,表示红灯,表示绿灯,共有16种等可能情形,满足条件的有11种小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为故答案为:【点睛】本题考查了列表法或画树状图法求概率,掌握列表法或画树状图法是解题的关键2、(1)(2)(3)【分析】(1)根据众数和中位数的概念求解可得;(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即,根据条形统计

23、图可知9分的有6人,人数最多,则众数为9,即(2)解:此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人此次测试成绩不低于9分的学生有(人)(3)解:七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为,八年级的3人分别列表如下,根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键3、(1)30,0.250;(2);(3)这个游戏对双方是不公平的,有利于乙方,说明见解析【详解】(1)根据频数

24、总数频率,频率频数总数计算,补全即可;(2)概率是题目中比较稳定在的那个数,观察(1)中表格可得到答案;(3)游戏是否公平,关键要看是否游戏双方赢的概率相同,本题中即甲方赢或乙方赢的概率是否相等,求出概率比较,即可得出结论【分析】解:(1)由题意得:,填表如下所示:试验次数4080120160200240280320360400出现方块的次数1118a404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.2530.250(2)从表中得出,出现方块的频率稳定在0.250附近,故可以估计出现方块的概率为;(3)列表如下:红桃123方

25、块123423453456由表可知所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,甲方赢,乙方赢,乙方赢甲方赢,这个游戏对双方是不公平的,有利于乙方【点睛】本题主要考查了求频率,根据频率估计概率,游戏公平性,解题的关键在于能够熟练掌握相关知识进行求解4、(1)120,0.3;(2)见解析;(3)C;(4) 【分析】(1)先根据A组频数及其频率求得总人数,再根据频率频数总人数可得m、n的值;(2)根据(1)中所求结果即可补全频数分布直方图;(3)根据中位数的定义即可求解;(4)画树状图列出所有等可能结果,再找到抽中A、C的结果,根据概率公式求解可得【详解】解:(1)本次调查的

26、总人数为300.1300(人),m3000.4120,n903000.3,故答案为:120,0.3;(2)补全频数分布直方图如下:(3)由于共有300个数据,则其中位数为第150、151个数据的平均数,而第150、151个数据的平均数均落在C组,据此推断他的成绩在C组,故答案为:C;(4)画树状图如下:由树状图可知,共有12种等可能结果,其中抽中A、C两组同学的有2种结果,抽中A、C两组同学的概率为【点睛】本题主要考查概率及数据统计,解题的关键是根据表格得到基本信息5、(1);(2)【分析】(1)利用概率公式求解指针指向3的概率即可;(2)先列表得到所有的等可能的结果数与和为5的结果数,再利用概率公式求解即可【详解】解:(1)甲转盘被分成三个大小相同的扇形,分别标有1,2,3;所以转动甲转盘,指针指向3的概率是: 故答案为:;(2)列表如下:12341和2和3和4和52和3和4和5和63和4和5和6和7所有的等可能的结果数有12种,和为5的结果数有3种,所以转动两个转盘指针指向的两个数字和是5的概率【点睛】本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“列表法得到所有的等可能的结果数与符合条件的结果数”是解本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁