《2022年强化训练沪科版九年级数学下册期末定向测试-卷(Ⅰ)(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练沪科版九年级数学下册期末定向测试-卷(Ⅰ)(含答案解析).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版九年级数学下册期末定向测试 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )ABC
2、D2、如图,在ABC中,BAC130,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,E在同一条直线上时,则BAD的大小是()A80B70C60D503、下列图形中,可以看作是中心对称图形的是( )ABCD4、如图,在ABC中,CAB=64,将ABC在平面内绕点A旋转到ABC的位置,使CCAB,则旋转角的度数为( )A64B52C42D365、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个搅拌均匀后,随机抽取一个小球,是红球的概率为( )ABCD6、下列关于随机事件的概率描述正确的是( )A抛掷一枚质地均匀的硬币出现“正面朝上”的概率
3、为0.5,所以抛掷1000次就一定有500次“正面朝上”B某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C随机事件发生的概率大于或等于0,小于或等于1D在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率 线 封 密 内 号学级年名姓 线 封 密 外 7、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是( )A1BCD8、如图,中,O是AB边上一点,与AC、BC都相切,若,则的半径为( )A1B2CD9、如图,AB是的直径,CD是的弦,且,则图中阴影部分的面积为( )ABCD10、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率
4、是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为_2、如图,AB为O的弦,AOB=90,AB=a,则OA=_,O点到AB
5、的距离=_3、在菱形ABCD中,AB6,E为AB的中点,连结AC,DE交于点F,连结BF记ABC(0180)(1)当60时,则AF的长是 _;(2)当在变化过程中,BF的取值范围是 _4、过年时包了100个饺子,其中有10个饺子包有幸运果,任意挑选一个饺子,正好是包有幸运果饺子的概率是 _5、已知A的半径为5,圆心A(4,3),坐标原点O与A的位置关系是_ 线 封 密 内 号学级年名姓 线 封 密 外 三、解答题(5小题,每小题10分,共计50分)1、新冠病毒在全球肆虐,疫情防控刻不容缓某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分)学校学
6、生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计下面提供了部分信息抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5抽取的40名学生成绩分析表:年级七年级八年级平均分88.1众 数8b中位数a8方 差1.91.89请根据以上信息,解答下列问题:(1)直接写出上表中a,b的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年
7、级学生的概率2、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,EOC=130将直角三角板AOB(OAB30)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5的速度逆时针旋转一周,设旋转时间为t 秒(1)如图2,当t=4 时,AOC= ,BOE= ,BOEAOC= ;(2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想AOC与BOE的数量关系,并说明理由;(3)在旋转过程中,是否存在某个时刻,使得射线 OA、OC、OD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值
8、,若不存在,请说明理由3、在中,点E在射线CB上运动连接AE,将线段AE绕点E顺时针旋转90得到EF,连接CF(1)如图1,点E在点B的左侧运动当,时,则_;猜想线段CA,CF与CE之间的数量关系为_(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系 线 封 密 内 号学级年名姓 线 封 密 外 4、根据要求回答以下视图问题:(1)如图,它是由5个小正方体摆成的一个几何体,将正方体移走后,新几何体与原几何体相比, 视图没有发生变化;(2)如图,请你在网格纸中画出该几何体的主视图(请用斜线
9、阴影表示);(3)如图,它是由几个小正方体组成的几何体的俯视图,小正方形上的数字表示该位置上的正方体的个数,请在网格纸中画出该几何体的左视图(请用斜线阴影表示)5、如图,已知线段,点A在线段上,且,点B为线段上的一个动点以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为和若旋转后M、N两点重合成一点C(即构成),设(1)的周长为_;(2)若,求x的值-参考答案-一、单选题1、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案【详解】解:抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,正面都朝
10、上的概率是:.故选A【点睛】本题考查了列举法求概率的知识此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比2、A【分析】根据三角形旋转得出,根据点A,D,E在同一条直线上利用邻补角 线 封 密 内 号学级年名姓 线 封 密 外 关系求出,根据等腰三角形的性质即可得到DAC=50,由此即可求解【详解】证明:绕点C逆时针旋转得到,ADC=DAC,点A,D,E在同一条直线上,DAC=50,BAD=BAC-DAC=80故选A【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质3、C【分析】根据中心对称图形的定义进行
11、逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心4、B【分析】先根据平行线的性质得ACC=CAB=64,再根据旋转的性质得CAC等于旋转角,AC=AC,则利用等腰三角形的性质得ACC=ACC=64,然后根据三角形内角和定理可计算出CAC的度数
12、,从而得到旋转角的度数【详解】解:CCAB,ACC=CAB=64ABC在平面内绕点A旋转到ABC的位置,CAC等于旋转角,AC=AC,ACC=ACC=64,CAC=180-ACC-ACC=180-264=52,旋转角为52故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等5、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:共有5个球,其中红球有2个,P(摸到红球)=,故选:A【点睛】此题主要考查概率的意义及求法用到的知识点为:概率=所求情况数与总
13、情况数之比6、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不
14、发生的事件7、B【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关于x的方程为一元二次方程的概率是,故选择B【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键8、D【分析】作ODAC于D,OEBC于E,如图,设O的半径为r,根据切线的性质
15、得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明ADOACB,然后利用相似比得到,再根据比例的性质求出r即可【详解】解:作ODAC于D,OEBC于E,如图,设O的半径为r,O与AC、BC都相切,OD=OE=r,而C=90,四边形ODCE为正方形, 线 封 密 内 号学级年名姓 线 封 密 外 CD=OD=r,ODBC,ADOACB, AF=AC-r,BC=3,AC=4,代入可得,r=故选:D【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题也考查了相似三角形的判定与性质
16、9、C【分析】如图,连接OC,OD,可知是等边三角形,计算求解即可【详解】解:如图连接OC,OD是等边三角形由题意知,故选C【点睛】本题考查了扇形的面积,等边三角形等知识解题的关键在于用扇形表示阴影面积10、B【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:随机掷一枚质地均匀的硬币三次,根据树状图可知至少有两次正面朝上的事件次数为:4,总的情况为8次,故至少有两次正面朝上的事件概率是:故选:B 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图二、填空题1、0.9【分析】根据题意可得长方
17、形的面积,然后依据骰子落在会徽图案上的频率稳定在0.15左右,总面积乘以频率即为会徽图案的面积【详解】解:由题意可得:长方形的面积为,骰子落在会徽图案上的频率稳定在0.15左右,会徽图案的面积为:,故答案为:【点睛】题目主要考查根据频率计算满足条件的情况,理解题意,熟练掌握频率的计算方法是解题关键2、 【分析】过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA=OB,且AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长
18、,即为O点到AB的距离【详解】解:过O作OCAB,则有C为AB的中点,OA=OB,AOB=90,AB=a,根据勾股定理得: OA2+OB2=AB,OA=,在RtAOC中,OA=,AC=AB=,根据勾股定理得:OC=故答案为:;【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题3、2 【分析】(1)证明是等边三角形,进而即可求得;(2)过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,证明在半圆上, 进而即可求得范围【详解】(1)如图,
19、 线 封 密 内 号学级年名姓 线 封 密 外 四边形是菱形,是等边三角形是的中点即故答案为:2(2)如图,过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,四边形是菱形,在以为圆心长度为半径的圆上,又ABC(0180)在半圆上,最小值为最大值为故答案为: 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了相似三角形的性质与判定,点与圆的位置关系求最值问题,掌握相似三角形的性质与判定是解题的关键4、【分析】直接利用概率公式进行计算即可.【详解】解:过年时包了100个饺子,有10个饺子包有幸运果,任意挑选一个饺子,正好是包有幸运果饺子的概率是 故答案为:【点睛】本题考查
20、的是简单随机事件的概率,熟练的利用概率公式进行计算是解本题的关键;概率的含义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5、在A上【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与A的位置关系【详解】解:点A的坐标为(4,3),OA=5,半径为5,OA=r,点O在A上故答案为:在A上【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,当点P在圆外dr;当点P在圆上d=r;当点P在圆内dr三、解答题1、(1)(2)(3)【分析】(1)根据众数和中位数的概
21、念求解可得;(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即,根据条形统计图可知9分的有6人,人数最多,则众数为9,即(2)解:此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人此次测试成绩不低于9分的学生有(人)(3) 线 封 密 内 号学级年名姓 线 封 密 外 解:七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为,八年级的3人分别列表如下,根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所
22、抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键2、(1)30,70,40;(2)AOCBOE=40,理由见解析;(3)t 的取值为5或20或62【分析】(1)先根据已知求出DOC、BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;(2)设旋转角为x,用x表示AOC和BOE,即可得出结论;(3)分OA为DOC的平分线;OC为DOA的平分线;OD为COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可(1)解:EOC=130,AOB=BOE=90,DOC=180130=5
23、0,BOC=13090=40,当t=4时,旋转角45=20,AOC=DOCDOA=5020=30,BOE=9020=70,BOEAOC=7030=40,故答案为:30,70,40;(2)解:AOCBOE=40,理由为:设旋转角为x,当三角板旋转至边 AB与射线 OE相交时,AOC=x50,BOE=x90,AOCBOE=(x50)(x90)=40;(3)解:存在,当OA为DOC的平分线时,旋转角5t =DOC=25,t=5;当OC为DOA的平分线时,旋转角5t =2DOC=100,t=20; 线 封 密 内 号学级年名姓 线 封 密 外 当OD为COA的平分线时,3605t=DOC=50,t=6
24、2,综上,满足条件的t 的取值为5或20或62【点睛】本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键3、(1);(2)不成立,【分析】(1)由直角三角形的性质可得出答案;过点E作MEEC交CA的延长线于M,由旋转的性质得出AE=EF,AEF=90,得出AEM=CEF,证明FECAEM(SAS),由全等三角形的性质得出CF=AM,由等腰直角三角形的性质可得出结论;(2)过点F作FHBC交BC的延长线于点H证明ABEEHF(AAS),由全等三角形的性质得出FH=BE,EH=AB=BC,由等腰直角三角形的性质可得出结论;(1),sinEAB=,故答案
25、为:30;如图1,过点E作交CA的延长线于M,将线段AE绕点E顺时针旋转90得到EF,在FEC和AEM中,为等腰直角三角形,;故答案为:; 线 封 密 内 号学级年名姓 线 封 密 外 (2)不成立如图2,过点F作交BC的延长线于点H,在FEC和AEM中,为等腰直角三角形,又,即【点睛】本题考查了旋转的性质,解直角三角形,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的面积,熟练掌握旋转的性质是解题的关键4、(1)主(2)见解析(3)见解析【分析】(1)根据移开后的主视图和没有移开时的主视图一致即可求解;(2)根据题意画出主视图即可;(3)根据从左边起各列的小正方形数分别为2,3,
26、1,画出左视图即可(1)将正方体移走后,新几何体与原几何体相比主视图没有变化,如图,故答案为:主(2)图的主视图如图,(3) 线 封 密 内 号学级年名姓 线 封 密 外 图的左视图如图,【点睛】本题考查了画三视图,根据立体图形得出三视图是解题的关键5、(1)4(2)【分析】(1)由旋转知:AM=AC=1,BN=BC,将ABC的周长转化为MN;(2)由+=270,得ACB=90,利用勾股定理列方程即可(1)解:由旋转知:AM=AC=1,BN=BC=3-x,ABC的周长为:AC+AB+BC=MN=4;故答案为:4;(2)解:+=270,CAB+CBA=360-270=90,ACB=180-(CAB+CBA)=180-90=90,AC2+BC2=AB2,即12+(3-x)2=x2,解得【点睛】本题主要考查了旋转的性质,勾股定理等知识,证明ACB=90是解题的关键