《2022年人教版八年级数学下册第十八章-平行四边形专项练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年人教版八年级数学下册第十八章-平行四边形专项练习试题(含详细解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知中,CD是斜边AB上的中线,则的度数是( )ABCD2、如图,矩形OABC的边OA长为2,边AB长为1,
2、OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A2.5B2CD3、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24m39B14m62C7m31D7m124、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D55、如图,在菱形ABCD中,AB5,AC8,过点B作BECD于点E,则BE的长为( )ABC6D6、如图,矩形ABCD的对角线AC和BD相交于点O,若AOD120,AC16,则AB的长为()A16B12C8D47、将一张长方形纸片ABCD按如图所示的方式折叠
3、,AE、AF为折痕,点B、D折叠后的对应点分别为、,若10,则EAF的度数为()A40B45C50D558、在ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若ABD、EFC的面积分别为21、7,则的值为( )ABCD9、如图,已知是平分线上的一点,是的中点,如果是上一个动点,则的最小值为( )ABCD10、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BECF2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()ABC4.5D4.3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、判断:(1)菱形的对角线互相垂直且相等_(
4、 )_(2)菱形的对角线把菱形分成四个全等的直角三角形_( )_2、正方形的对角线长为cm,则它的周长为_cm3、七巧板被西方人称为“东方魔术”下面的两幅图是由同一副七巧板拼成的已知七巧板拼成的正方形(如图1)边长为若图2的“小狐狸”图案中的阴影部分面积为,那么_4、已知正方形ABCD的一条对角线长为2,则它的面积是_5、在平行四边形ABCD中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,AB=6,EF=2,则BC的长为_三、解答题(5小题,每小题10分,共计50分)1、(1)如图1中,A90,请用直尺和圆规作一条直线,把ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹)
5、(2)已知内角度数的两个三角形如图2、图3所示请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数(3)一个三角形有一内角为48,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为 2、如图,将直角三角形分割成一个正方形和两对全等的直角三角形,在RtABC中,ACB90,四边形FCEO是正方形,RtAOFRtAOD,RtBOERtBOD若设正方形的边长为x,则可以探究x与直角三角形ABC的三边a,b,c之间的关系探究:RtBOERtBOD,BDBEax,RtAOFRtAOD,ADAFbx,ABBD+AD,ax+bxc,x(1)小颖
6、同学发现利用SABCSAOB+SAOC+SBOC也可以探究正方形的边长x与直角三角形ABC的三边a,b,c之间的关系请你根据小颖的思路,完成她的探究过程(2)请你结合探究和小颖的解答过程验证勾股定理3、(探究发现)(1)如图1,ABC中,ABAC,BAC90,点D为BC的中点,E、F分别为边AC、AB上两点,若满足EDF90,则AE、AF、AB之间满足的数量关系是 (类比应用)(2)如图2,ABC中,ABAC,BAC120,点D为BC的中点,E、F分别为边AC、AB上两点,若满足EDF60,试探究AE、AF、AB之间满足的数量关系,并说明理由(拓展延伸)(3)在ABC中,ABAC5,BAC12
7、0,点D为BC的中点,E、F分别为直线AC、AB上两点,若满足CE1,EDF60,请直接写出AF的长4、如图,四边形ABCD是平行四边形,BAC90(1)尺规作图:在BC上截取CE,使CECD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论5、如图,已知四边形ABCD是正方形,点E是AD边上的一点(不与点A,D重合),连接CE,以CE为一边作正方形CEFG,使点F,G与点A,B在CE的两侧,连接BE并延长,交GD延长线于点H(1)如图1,请判断线段BE与GD的数量关系和位置关系,并说明理
8、由;(2)如图2,连接BG,若AB2,CE,请你直接写出的值-参考答案-一、单选题1、B【解析】【分析】由题意根据三角形的内角和得到A=36,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论【详解】解:ACB=90,B=54,A=36,CD是斜边AB上的中线,CD=AD,ACD=A=36.故选:B【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键2、D【解析】【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可【详解】解
9、:四边形OABC是矩形,在中,由勾股定理可知:, ,弧长为,故在数轴上表示的数为,故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键3、C【解析】【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键4、B【解析】【分析】连接AC,由平行四边形的性质可得,再由E、F分别是
10、BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,AD=BC,AB=CD,ABCD,E、F分别是BC,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质5、B【解析】【分析】根据菱形的性质求得的长,进而根据菱形的面积等于,即可求得的长【详解】解:如图,设的交点为,四边形是菱形,在中,菱形的面积等于故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得的长是解题的关键6、C【解析】【分析】由题意可得AOBOCODO8,可证ABO是等边三角形,可得AB8【详解
11、】解:四边形ABCD是矩形,AC2AO2CO,BD2BO2DO,ACBD16,OAOB8,AOD120,AOB60,AOB是等边三角形,ABAOBO8,故选:C【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键7、A【解析】【分析】可以设EAD,FAB,根据折叠可得DAFDAF,BAEBAE,用,表示DAF10+,BAE10+,根据四边形ABCD是矩形,利用DAB90,列方程10+10+10+90,求出+30即可求解【详解】解:设EAD,FAB,根据折叠性质可知:DAFDAF,BAEBAE,BAD10,DAF10+,BAE10+,四边形ABCD是矩形DAB90
12、,10+10+10+90,+30,EAFBAD+DAE+FAB,10+,10+30,40则EAF的度数为40故选:A【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系8、B【解析】【分析】过点A作ABC的高,设为x,过点E作EFC的高为,可求出,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为即可求解【详解】解:过点A作ABC的高,设为x,过点E作EFC的高为, , , ,点E、F分别是线段AC、CD的中点, , , , ,过点D作DMAB,DNAC,AD为平分线,DM=DN,即: ,
13、故选:B【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出9、C【解析】【分析】根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值【详解】解:点P是AOB平分线上的一点,PDOA,M是OP的中点,点C是OB上一个动点当时,PC的值最小,OP平分AOB,PDOA,最小值,故选C【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键10、A【解析】【分析】根据正方形的四条边
14、都相等可得BCDC,每一个角都是直角可得BDCF90,然后利用“边角边”证明CBEDCF,得BCECDF,进一步得DHCDHE90,从而知GHDE,利用勾股定理求出DE的长即可得出答案【详解】解:四边形ABCD为正方形,BDCF90,BCDC,在CBE和DCF中,CBEDCF(SAS),BCECDF,BCE+DCH90,CDF+DCH90,DHCDHE90,点G为DE的中点,GHDE,ADAB6,AEABBE624,GH故选A【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解二、填空题1、 【解析】【分析】根
15、据菱形的性质,即可求解【详解】解:(1)菱形的对角线互相垂直且平分;(2)菱形的对角线把菱形分成四个全等的直角三角形故答案为:(1);(2)【点睛】本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键2、16【解析】【分析】根据正方形对角线的长,可将正方形的边长求出,进而可将正方形的周长求出【详解】解:设正方形的边长为x,正方形的对角线长为cm,解得:x=4,正方形的边长为:4(cm),正方形的周长为44=16(cm)故答案为:16【点睛】本题考查了正方形的性质,勾股定理,解决本题的关键是掌握正方形的性质3、4【解析】【分析】设阴影小正方形的边长为x cm,根据阴影部分的面
16、积刚好是大正方形里梯形的面积,求出x的值,进而得出大正方形的对角线的长度是4x cm,最后求出边长a即可【详解】解:设阴影小正方形的边长为x cm,由题意得:(2x+4x)x=6,解得:x= 或a=-(舍去),小正方形的边长为cm,则大正方形的对角线长为4=4(cm),a=4=4(cm),故答案为:4【点睛】本题主要考查七巧板的知识,熟练掌握七巧板各边的关系是解题的关键4、6【解析】【分析】正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.【详解】解: 正方形ABCD的一条对角线长为2, 故答案为:【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半
17、”是解题的关键.5、10或14#14或10【解析】【分析】利用BF平分ABC, CE平分BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可【详解】解: 四边形ABCD是平行四边形,BF平分ABC, CE平分BCD, , 由等角对等边可知:, 情况1:当与相交时,如下图所示:, ,情况2:当与不相交时,如下图所示:,故答案为:10或14【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况三、解答题1、(1)见解析;(2)见解析;(3)
18、108【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,作BC的垂直平分线即可确定点E,连接AE即可;(2)分别以24为底角,可分割出两个等腰三角形;(3)利用图1、2、3中三角形内角之间的关系进行判断【详解】解:(1)如图,作BC的垂直平分线交BC于E,连接AE,则直线AE即为所求;(2)如图:(3)根据(1)(2)中三个角之间的关系可知:当三角形是直角三角形时,肯定可以分割成两个等腰三角形,此时最大角为90;当一个角是另一个三倍时,也肯定可以分割成两个等腰三角形,此时最大角为99;如图3,此时最大角为108综上所述:最大角为108,故答案为:108【点睛】本题主要考查垂直平分线的尺规
19、作图、直角三角形斜边中线定理及等腰三角形的性质,熟练掌握垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质是解题的关键2、(1),证明见解析 ;(2)见解析【分析】(1)由正方形的性质可得OF=OE,OFAC,OEBC,由RtAOFRtAOD,可以推出OE=OD=OE,再由可得,由此即可得到答案;(2)根据(1)和题目已知可得,由此利用完全平方公式和平方差公式求解即可【详解】解:(1)如图所示,连接OC四边形OECF是正方形,OF=OE,OFAC,OEBC,RtAOFRtAOD,OF=OD,OE=OD=OE,ACB=90,即;(2),即【点睛】本题主要考查了正方形的性质,全等三角形
20、的性质,平方差公式,完全平方公式,勾股定理的证明等等,解题的关键在于正确理解题意3、(1)ABAF+AE;(2)AE+AFAB,理由见解析;(3)或【分析】(1)证明BDFOADE,可得BFAE,从而证明ABAF+AE;(2)取AB中点G,连接DG,利用ASA证明GDFADE,得到GFAE,可得AGABAF+FGAE+AF;(3)分两种情况:当点E在线段AC上时或当点E在AC延长线上时,取AC的中点H,连接DH,同理证明ADFHDE,得到AFHE,从而求解【详解】(1)如图1,ABAC,BAC90,BC45,D为BC中点,ADBC,BADCAD45,ADBDCD,ADBADF+BDF90,ED
21、FADE+ADF90,BDFADE,BDAD,BCAD45,BDFADE(ASA),BFAE,ABAF+BFAF+AE;故答案为:ABAF+AE;(2)AE+AFAB理由是:如图2,取AB中点G,连接DG,点G是斜边中点,DGAGBGAB,ABAC,BAC120,点D为BC的中点,BADCAD60,GDABAD60,即GDF+FDA60,又FAD+ADEFDE60,GDFADE,DGAG,BAD60,ADG为等边三角形,AGDCAD60,GDAD,GDFADE(ASA),GFAE,AGABAF+FGAE+AF,AE+AFAB;(3)当点E在线段AC上时,如图3,取AC的中点H,连接DH,当AB
22、AC5,CE1,EDF60时,AE4,此时F在BA的延长线上,同(2)可得:ADFHDE (ASA),AFHE,AHCHAC,CE1,当点E在AC延长线上时,如图4,同理可得:;综上:AF的长为或【点睛】本题考查三角形综合问题,掌握全等三角形的判定与性质是解题的关键4、(1)图形见解析;(2),证明见解析【分析】(1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;(2)证明DF平分,再利用角平分线的性质判定即可【详解】(1)图形如下:(2),证明如下:由(1)可得:,CECD四边形ABCD是平行四边形ADBC,ABCD,即DF平分B
23、AC90【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定与性质5、(1)BE=DG,BEDG,理由见解析;(2)【分析】(1)由“SAS”证得GCDECB;再由全等三角形的性质和平行线的性质可得EBC=HED=GDC,由余角的性质可得答案;(2)连接BD,EG,由知BHD=EHG=90,根据勾股定理可得出答案【详解】证明:(1)BE=DG,BEDG,理由如下:四边形ABCD是正方形,四边形FGCE是正方形,CD=CB,CG=CE,GCE=DCB=90,GCD=ECB,且CD=CB,CG
24、=CE,GCDECB(SAS),BE=DG,GDC=EBC,ADBC,EBC=HED=GDC,GDC+HDE=90,HED+HDE=90,DHE=90,BEDG;(2)连接BD,EG,如图所示,由(1)知BHD=EHG=90,DH2+BH2=BD2=AB2+AD2=22+22=8,EH2+HG2=EG2=CG2+CE2=() 2+() 2=5+5=10,在RtBGH中,BH2+HG2=BG2,在RtEDH中,EH2+DH2=DE2,BG2+DE2=BH2+HG2+EH2+DH2=8+10=18【点睛】本题考查了正方形的判定与性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用全等三角形的性质解决问题,灵活运用条件解决问题