《2022年最新沪科版八年级下册数学期末综合练习-(A)卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版八年级下册数学期末综合练习-(A)卷(含答案详解).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学期末综合练习 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、估算的值应在( )A和之间B和之间C和之间D和之间2、以下列各组数
2、为三边的三角形中不是直角三角形的是( )A1、2B6、10、8C3、4、5D6、5、43、下列图形中,内角和等于外角和的是( )ABCD4、如图是我国古代数学家赵爽在为周髀算经作注解时给出的“弦图”,它被第24届国际数学家大会选定为会徽,是国际数学界对我国古代数学伟大成就的肯定“弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,若直角三角形的两条直角边分别为a、b,大正方形边长为3,小正方形边长为1,那么ab的值为( )A3B4C5D65、如图,在长方形ABCD中,分别按图中方式放入同样大小的直角三角形纸片如果按图方式摆放,刚好放下4个;如果按图方式摆放,刚好放下3个若BC4a
3、,则按图方式摆放时,剩余部分CF的长为( )ABCD6、已知等腰三角形的两边长分别是一元二次方程的两根,则该等腰三角形的周长为( )A9B12C2或5D9或127、若菱形的两条对角线长分别为10和24,则菱形的面积为()A13B26C120D2408、若在实数范围内有意义,则x的取值范围是( )AxBxCxDx9、下列二次根式中,化简后可以合并的是( )A和B和 线 封 密 内 号学级年名姓 线 封 密 外 C和D和10、将方程配方,则方程可变形为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是
4、_2、比较大小:2_5(填“”、“”或“”)3、计算:_4、如图,中,点D为外一点,且,垂足为D,连接,交于E,若,则的度数为_5、在ABCD中,AC与BD相交于点O,AOB=60,BD=4,将ABC沿直线AC翻折后,点B落在点B处,那么DB的长为_三、解答题(5小题,每小题10分,共计50分)1、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图请根据相关信息,解答下列问题:(1)该校抽查八年级学生的人数为 ,图中的值为 ;(2)请将条形统计图补充完整;(3)求被
5、抽查的学生每天平均课外阅读时间的众数、中位数和平均数;(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?2、今年忠县柑橘喜获丰收,某果园销售的柑橘“忠橙”和“爱媛”很受消费者的欢迎,“忠橙”售价80元/箱,“爱媛”售价60元/箱在11月第一周“忠橙”的销量比“爱媛”的销量多100箱,且这两种柑橘的总销售额为50000元(1)在11月第一周,该果园“忠橙”和“爱媛”的销量各为多少箱?(2)为了扩大销售,11月第二周“忠橙”售价降价,销量比第一周培加了,“爱媛”售价不变,销量比第一周增加了,结果这两种相橘第二周的总销售额比第一周的总销售额增加了,求
6、的值3、解下列方程:(1)(2)x26x30(3)3x(x1)2(1x)(4)2x25x+30 线 封 密 内 号学级年名姓 线 封 密 外 4、某中学初二年级游同学在学习了勾股定理后对九章算术勾股章产生了学习兴趣今天,他学到了勾股章第7题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽问索长几何?”本题大意是:如图,木柱,绳索AC比木柱AB长三尺,BC的长度为8尺,求:绳索AC的长度5、数学兴趣小组的同学发现:一些复杂的图形运动是由若干个图形基本运动组合形成的,如一个图形沿一条直线翻折后再沿这条直线的方向平移,这样的一种图形运动,大家讨论后把它称为图形的“翻移运动”,这条直线则称为
7、(这次运动的)“翻移线”如图1,就是由沿直线1翻移后得到的(先翻折,然后再平移)(1)在学习中,兴趣小组的同学就“翻移运动”对应点(指图1中的与,与)连线是否被翻移线平分发生了争议对此你认为如何?(直接写出你的判断)(2)如图2,在长方形中,点分别是边中点,点在边延长线上,联结,如果是经过“翻移运动”得到的三角形请在图中画出上述“翻移运动”的“翻移线”直线;联结,线段和直线交于点,若的面积为3,求此长方形的边长的长(3)如图3,是(2)中的长方形边上一点,如果,先按(2)的“翻移线”直线翻折,然后再平移2个单位,得到,联结线段,分别和“翻移线”交于点和点,求四边形的面积-参考答案-一、单选题1
8、、C【分析】根据二次根式的性质化简,进而根据无理数的大小估计即可求得答案【详解】解:,故选C【点睛】本题考查了二次根式的混合运算,无理数的大小估算,掌握二次根式的性质是解题的关键2、D【分析】利用勾股定理的逆定理逐一分析各选项即可得到答案. 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:A、因为 ,所以是直角三角形,故本选项不符合题意;B、因为 ,所以是直角三角形,故本选项不符合题意;C、因为 ,所以是直角三角形,故本选项不符合题意;D、因为,所以不是直角三角形,故本选项符合题意;故选:D【点睛】本题考查的是勾股定理的逆定理的应用,掌握“勾股定理的逆定理:若 则以为边的三角形是直角
9、三角形”是解本题的关键.3、B【分析】设n边形的内角和等于外角和,计算(n-2)180=360即可得出答案;【详解】解:设n边形的内角和等于外角和(n-2)180=360解得:n=4故答案选:B【点睛】本题考查了多边形内角和与外角和,熟练掌握多边形内角和计算公式是解题的关键4、B【分析】根据大正方形的面积是9,小正方形的面积是1,可得直角三角形的面积,即可求得ab的值【详解】解:大正方形边长为3,小正方形边长为1,大正方形的面积是9,小正方形的面积是1,一个直角三角形的面积是(9-1)4=2,又一个直角三角形的面积是ab=2,ab=4故选:B【点睛】本题考查了与弦图有关的计算,还要注意图形的面
10、积和a,b之间的关系5、A【分析】由题意得出图中,BE=a,图中,BE=a,由勾股定理求出小直角三角形的斜边长为a,进而得出答案【详解】解:BC=4a,图中,BE=a,图中,BE=a,小直角三角形的斜边长为,图中纸盒底部剩余部分CF的长为4a-2a=a;故选:A【点睛】本题考查了矩形的性质以及勾股定理;熟练掌握矩形的性质和勾股定理是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 6、B【分析】因式分解法求得方程的根,根据等腰三角形的性质,确定三边,在三角形存在的前提下,计算周长【详解】,等腰三角形的三边长为2,2,5,不满足三边关系定理,舍去;或2,5,5,满足三边关系定理,等腰三角
11、形的周长为2+5+5=12,故选B【点睛】本题考查了一元二次方程的解法,三角形的三边关系定理,等腰三角形的性质,熟练掌握一元二次方程的解法,三角形三边关系定理是解题的关键7、C【分析】根据菱形的面积公式即可得到结论【详解】解:菱形的两条对角线长分别为10和24,菱形的面积为,故选:C【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的面积公式8、A【分析】由题意根据二次根式的性质即被开方数大于或等于0,进而解不等式即可【详解】解:根据题意得:3x-10,解得:x故选:A【点睛】本题考查二次根式的性质,注意掌握二次根式的被开方数是非负数9、B【分析】先化简,再根据同类二次根式的定义解答即可【
12、详解】解:、化简得:和不是同类二次根式,不能合并同类项,不符合题意;、化简得:和是同类二次根式,可以合并,不符合题意;、化简得:和,不是同类二次根式,不能合并同类项,不符合题意;、和被开方数不同,不是同类二次根式,不符合题意;故选:B【点睛】本题主要考查了同类二次根式的定义,解题的关键是掌握化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式10、C 线 封 密 内 号学级年名姓 线 封 密 外 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案【详解】解:,则,即,故选:C【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几
13、种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键二、填空题1、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长10,斜边中线长为105,故答案为 5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键2、【分析】先对根式及整数进行变形,然后比较大小即可确定【详解】解:,又,故答案为:【点睛】本题主要考查二次根式比较大小的方法,熟练掌握比较大小的方法是解题关键3、3【分析】原式利用绝对值的代数意义,以及二
14、次根式性质化简即可得到结果【详解】解:0,0,20,原式()+|2|2+3-+23,故答案为:3 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键4、【分析】取的中点,连接,进而根据直角三角形斜边上的直线可得,根据题意,进而可证明是等边三角形,根据平角的定义得,根据等边对等角,设,根据三角形内角和定理可得,求得,进而求得,根据三角形的外角性质即可求得【详解】解:如图,取的中点,连接,是等边三角形中设,又则故答案为:【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,等边三角形的性质与判定,三角形内角和定理与三角形的外角性
15、质,证明CDF是等边三角形是解题的关键5、2【分析】连接BO证明BOD是等边三角形,即可求得BD=OD=BD=2【详解】解:如图,连接BO 线 封 密 内 号学级年名姓 线 封 密 外 AOB=BOA=60,BOD=60,OB=OB=OD,BOD是等边三角形,BD=OD=BD=2,故答案为:2【点睛】本题考查了折叠变换的性质、平行四边形的性质以及等边三角形的判定和性质;熟练掌握翻折变换和平行四边形的性质是解题的关键三、解答题1、(1)100,18;(2)见解析;(3)(4)72人【分析】(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;(2)根据总数减去其他三项即可求
16、得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;(3)根据条形统计图可知阅读时间为1.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为,400乘以18%即可求得【详解】(1)总人数为:(人);故答案为:(2)每天平均课外阅读时间为1.5小时的人数为:(人)补充条形统计图如下:(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5中位数为1.5,平均数为;(4)(人)估
17、计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有人【点睛】本题考查了条形统计图与扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键2、(1)该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)40【分析】(1)设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,根据等量关系是“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000,列方程,解方程即可;(2)根据等量关系是“忠橙”降价后售价降价后销量箱数+“爱媛”售价增加后销量箱数=总销 线 封 密 内 号学级年名姓 线 封 密 外 售额比第一周的总销售额增加了,列方程,解方程
18、即可(1)解:设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,由题意得,解得,经检验是原方程的根,答:该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)解:由题意得整理,得:,解得:,(不合题意,舍去),答:的值为40【点睛】本题考查列一元一次方程解销售问题应用题,列一元二次方程解应用题,掌握列一元一次方程,一元二次方程解应用题的方法与步骤,抓住等量关系“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000列方程是解题关键3、(1),(2),(3),(4),【分析】(1)原方程运用因式分解法求解即可;(2)原方程运用配方法求解即可;(3)原方程移项后运用因式分解法求解即可
19、;(4)原方程运用公式法求解即可(1) , ,(2)x26x30 , 线 封 密 内 号学级年名姓 线 封 密 外 (3)3x(x1)2(1x) , ,(4)2x25x+30在这里 ,【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法也考查了配方法、公式法解一元二次方程4、绳索长是尺【分析】设,则,由勾股定理及即可求解【详解】设,则,在中,解得:,答:绳索长是尺【点睛】本题考查勾股定理得应用,用题意列出等量关系式是解题的关键5、(1)“翻移运动”对应点(指图1中的与,与连线被翻移线平分(2)3(3)11或1
20、0【分析】(1)画出图形,即可得出结论;(2)作直线,即为“翻移线”直线,再由“翻移运动”的性质和三角形面积关系求解即可;(3)分两种情况:先按(2)的“翻移线”直线翻折,然后再向上平移2个单位,先按(2)的“翻移线”直线翻折,然后再向下平移2个单位,由“翻移运动”的性质、梯形面积公式和三角形面积公式分别求解即可(1)解:如图1,连接,则“翻移运动”对应点(指图1中的与,与连线被翻移线平分; 线 封 密 内 号学级年名姓 线 封 密 外 (2)解:作直线,即为“翻移线”直线,如图2所示:四边形是长方形,由“翻移运动”的性质得:,是的中点,;(3)解:分两种情况:先按(2)的“翻移线”直线翻折,然后再向上平移2个单位,如图3所示:设翻折后的三角形为,连接,则,同(2)得:,四边形的面积梯形的面积的面积的面积;先按(2)的“翻移线”直线翻折,然后再向下平移2个单位,如图4所示:设翻折后的三角形为,连接,则, 线 封 密 内 号学级年名姓 线 封 密 外 同(2)得:,四边形的面积梯形的面积的面积的面积;综上所述,四边形的面积为11或10【点睛】本题是四边形综合题目,考查了长方形的性质、“翻移运动”的性质、梯形面积公式、三角形面积公式等知识,本题综合性强,解题的关键是熟练掌握“翻移运动”的性质和长方形的性质