《2022年最新浙教版初中数学七年级下册第四章因式分解定向练习练习题(浙教版).docx》由会员分享,可在线阅读,更多相关《2022年最新浙教版初中数学七年级下册第四章因式分解定向练习练习题(浙教版).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解定向练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式由左到右的变形中,属于因式分解的是( ).A.B.C.D.2、下列因式分解正确的是( )A.B.C.D.3、把多项式x39x分解因式,正确的结果是( )A.x(x29)B.x(x3)(x3)C.x(x3)2D.x(3x)(3x)4、下列各式从左到右的变形属于因式分解的是( )A.B.C.D.5、
2、已知,那么的值为( )A.3B.6C.D.6、下列各式由左边到右边的变形,是因式分解的是( )A.B.C.D.7、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)8、下列各式由左边到右边的变形,是因式分解的是()A.x2+xy4x(x+y)4B.C.(x+2)(x2)x24D.x22x+1(x1)29、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)210、下列各选
3、项中因式分解正确的是( )A.x21(x1)2B.a32a2aa2(a2)C.2y24y2y(y2)D.a2b2abbb(a1)211、下列等式中,从左到右的变形是因式分解的是()A.2x(x1)2x22xB.4m2n2(4m+n)(4mn)C.x2+2xx(x2)D.x22x+3x(x2)+312、下列式子的变形是因式分解的是( )A.B.C.D.13、下列各式中,能用完全平方公式分解因式的是()A.B.C.D. 14、若,则的值为( )A.B.C.D.15、下列多项式能用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b2二、填空题(10小题,每小
4、题4分,共计40分)1、如果两个多项式有公因式,则称这两个多项式为关联多项式,若x225与(xb)2为关联多项式,则b_;若(x1)(x2)与A为关联多项式,且A为一次多项式,当Ax26x2不含常数项时,则A为_2、分解因式_3、6x3y23x2y3分解因式时,应提取的公因式是_4、已知x2y221,xy3,则x+y_5、分解因式:2x3+12x2y+18xy2_6、分解因式:12a2b9ac_7、分解因式:x41_8、已知二次三项式x2+px+q因式分解的结果是(x3)(x5),则p+q=_9、分解因式:3mn212m2n_10、多项式x3yxy的公因式是_三、解答题(3小题,每小题5分,共
5、计15分)1、因式分解:m2(a+b)16(a+b)2、(1)计算与化简: (2)因式分解: (3)先化简,再求值:,其中,3、因式分解:81a4-16-参考答案-一、单选题1、C【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A不符合;B、没把一个多项式转化成几个整式积,故B不符合;C、把一个多项式转化成几个整式积,故C符合;D、没把一个多项式转化成几个整式积,故D不符合;故选:C.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积.2、D【分析】A.直接利用平方差公式分解因式得出答案;B.直接提取公因式a,进而分解因式即可
6、;C.直接利用完全平方公式分解因式得出答案;D.首先提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:A.x2-9=(x-3)(x+3),故此选项不合题意;B.a3-a2+a=a(a2-a+1),故此选项不合题意;C.(x-1)2-2(x-1)+1=(x-2)2,故此选项不合题意;D.2x2-8xy+8y2=2(x-2y)2,故此选项符合题意;故选:D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.3、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x39xx(x29)x(x3)(x3).故选:B.【点睛】本题考查了提公因式和公式
7、法分解因式,熟练掌握平方差公式是解题的关键.4、B【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,可得答案.【详解】解:A、,属于整式乘法;B、,属于因式分解;C、,没把一个多项式转化成几个整式积的形式,不属于因式分解;D、,等式左边不是多项式,不属于因式分解;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完
8、全平方公式进行变形是解题的关键.6、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.7、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不
9、是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不
10、符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.9、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:
11、D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A、,选项错误;B、,选项错误;C、 ,选项错误;D、,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.11、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x1)2x22x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2n2(2m+n)(2mn),故此选项不符合题意;C.
12、x2+2xx(x2),把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;D.x22x+3x(x2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.12、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,由此结合选项即可作出判断.【详解】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整
13、式积的形式,不是因式分解,故本选项错误;D、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,属于基础题.13、D【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.14、C【分析】根据十字相乘法可直接进
14、行求解a、b的值,然后问题可求解.【详解】解:,;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.15、D【分析】利用平方差公式,以及完全平方公式判断即可.【详解】解:A、原式m(m+4n),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式(a2b)2,符合题意.故选:D.【点睛】此题考查了因式分解运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.二、填空题1、5 -2x-2或-x-2 【分析】先将x2-25因式分解,再根据关联多项式的定义分情况求出b;再分A=k(x+1)=kx+k或A=k(x+2)=kx+2k两种情况,根据
15、不含常数项.【详解】解:x2-25=(x+5)(x-5),x2-25的公因式为x+5、x-5.若x2-25与(x+b)2为关联多形式,则x+b=x+5或x+b=x-5.当x+b=x+5时,b=5.当x+b=x-5时,b=-5.综上:b=5.(x+1)(x+2)与A为关联多项式,且A为一次多项式,A=k(x+1)=kx+k或A=k(x+2)=kx+2k,k为整数.当A=k(x+1)=kx+k(k为整数)时,若A+x2-6x+2不含常数项,则k+2=0,即k=-2.A=-2(x+1)=-2x-2.当A=k(x+2)=kx+2k(k为整数)时,若A+x2-6x+2不含常数项,则2k+2=0,即k=-
16、1.A=-x-2.综上,A=-2x-2或A=-x-2.故答案为:5,-2x-2或-x-2.【点睛】本题主要考查多项式、公因式,熟练掌握多项式、公因式的意义是解决本题的关键.2、【分析】原式提取2,再利用平方差公式分解即可.【详解】解:=2(x2-9)=2(x+3)(x-3).故答案为:2(x+3)(x-3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、3x2y2【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故答案为
17、:3x2y2.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.4、7【分析】根据平方差公式分解因式解答即可.【详解】解:x2y2(xy)(x+y)21,xy3,3(x+y)21,x+y7.故答案为:7.【点睛】此题考查平方差公式分解因式,关键是根据平方差公式展开解答.5、2x(x+3y)2【分析】首先提取公因式2x,再利用完全平方公式分解因式得出答案.【详解】解:原式2x(x2+6xy+9y2)2x(x+3y)2.故答案为:2x(x+3y)2.【点睛】此题考查的是因式分解,掌
18、握提公因式法和公式法是解题的关键.6、【分析】根据提公因式法分解因式求解即可.【详解】解:12a2b9ac.故答案为:.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.7、.【分析】首先把式子看成x2与1的平方差,利用平方差公式分解,然后再利用一次即可.【详解】解:x41(x21)(x21)(x21)(x1)(x1).故答案是:(x21)(x1)(x1).【点睛】本题主要考查了平方差公式,熟练公式是解决本题的关键.8、7【分析】利用多项式乘以多项式法则,以及多项式相等的条件求出、的值,再代入计算可得
19、.【详解】解:根据题意得:,则.故答案是:7.【点睛】此题考查了因式分解十字相乘法,熟练掌握运算法则是解本题的关键.9、3mn(n4m)【分析】根据提公因式法进行分解即可.【详解】3mn212m2n=3mn(n4m).故答案为:3mn(n4m).【点睛】本题考查了因式分解,掌握提公因式法分解因式是解题的关键.10、xy【分析】根据公因式的找法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.【详解】解:多项式x3yxy的公因式是xy.故答案为:xy.【点睛】此题考查了找公因式,关键是掌握找公
20、因式的方法.三、解答题1、 (a+b)(m+4)(m-4)【分析】原式提取(a+b),再利用平方差公式继续分解即可.【详解】解:m2(a+b)16(a+b)=(a+b)(m2-16)=(a+b)(m+4)(m-4) .【点睛】本题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2、(1)-2;(2);(3);-6【分析】(1)根据实数的运算法则,求一个数的绝对值以及负整数指数幂运算即可;根据完全平方公式以及平方差公式计算即可;(2)先提取公因式ab,然后运用完全平方公式因式分解即可;先提取公因式,然后运用平方差公式因式分解即可;(3)根据整式的混合运算法则化简,代入求解即可.【详解】解:(1), (2) (3)将代入得: 原式.【点睛】本题主要考查实数的运算,绝对值的求法,负整数指数幂,整式的混合运算,提公因式法以及公式法因式分解等知识点,熟练使用乘法公式以及整式的运算法则是解题的关键.3、【分析】利用平方差公式分解因式即可;【详解】解:原式=,=,=;【点睛】本题主要考查了利用平方差公式进行因式分解,准确计算是解题的关键.