《2022年精品解析北师大版八年级数学下册第五章分式与分式方程同步测试试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版八年级数学下册第五章分式与分式方程同步测试试卷(无超纲带解析).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第五章分式与分式方程同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分式中,是最简分式的是( )ABCD2、北斗三号系统产生的时间基准可达到300万年误差1秒,创造了卫星
2、授时的“中国精度”北斗卫星授时精度为,这个精度以s为单位表示为( )ABCD3、如果关于x的方程无解,则a( )A1B3C1D1或34、化简的结果是()AmBmCm+1Dm15、分式可变形为( )ABCD6、下列各式中,正确的是( )ABCD7、代数式,中,分式的个数为()A1B2C3D48、下列关于x的方程是分式方程的是( )ABCD9、某工程队要修路20千米,原计划平均每天修x千米,实际平均每天多修了0.1千米,则完成任务提前了()A()天B()天C()天D()天10、甲、乙两人骑自行车从相距60千米的A、B两地同时出发,相向而行,甲从A地出发至2千米时,想起有东西忘在A地,即返回去取,又
3、立即从A地向B地行进,甲、乙两人恰好在AB中点相遇,已知甲的速度比乙的速度每小时快2.5千米,求甲、乙两人的速度,设乙的速度是x千米/小时,所列方程正确的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _只青蛙2、若分式的值为零,则x的值为 _3、已知:关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,则关于x的方程的两个解为_4、要使有意义,则x应满足
4、 _5、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n_三、解答题(5小题,每小题10分,共计50分)1、先化简,再从的范围内选取一个合适的整数代入求值2、已知,求代数式的值3、我们已经学过如果关于x的分式方程满足(a,b分别为非零整数),且方程的两个跟分别为我们称这样的方程为“十字方程”例如: 可化为 再如: 可化为 应用上面的结论解答下列问题:(1)“十字方程”,则 , ;(2)“十字方程”的两个解分别为,求的值;(3)关于的“十字方程”的两个解分别为,求的值4、解答(1)计算:(2)解方程:5、某经销商用16
5、000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元(1)求一件A,B型商品的进价分别为多少元?(2)若该经销商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A型商品m件,求该经销商销售这批商品的利润p与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该经销商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该经销商售完所有商品并捐献慈善资金后获得的最大收益-参考答案
6、-一、单选题1、B【分析】直接利用分式的基本性质结合最简分式的定义:分子与分母不含公因式的分式叫做最简分式,进而判断即可【详解】解:A、的分子与分母含公因式(x+1),不属于最简分式,不符合题意; B、的分子与分母不含公因式,属于最简分式,符合题意;C、的分子与分母含公因式a,不属于最简分式,不符合题意;D、的分子与分母含公因式(ab),不属于最简分式,不符合题意;故选:B【点睛】此题主要考查了最简分式,正确掌握最简分式的定义(分子与分母不含公因式的分式叫做最简分式)是解题关键2、C【分析】将10乘以对应的进率即可得到答案【详解】解:10ns=s, 故选:C【点睛】此题考查同底数幂的乘法法则:
7、底数不变,指数相加,正确掌握同底数幂的计算法则及单位的换算进率是解题的关键3、B【分析】先去分母,化成整式方程,令x-1=0,确定x的值,回代x4a,得a值【详解】,去分母,得3=x-1+a,整理,得x4a,令x-10,得x=1,4a1,a3故选B【点睛】本题考查了分式方程无解问题,正确理解分式方程无解的意义是解题的关键4、C【分析】把除法转化为乘法,然后约分即可求出答案【详解】解:原式m+1,故选:C【点睛】本题考查了分式的除法运算,两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘,再按乘法法则计算即可5、C【分析】根据分式的基本性质进行分析判断【详解】解:,故C的变形符合题意,A、
8、B和D的变形不符合题意,故答案为:C【点睛】本题考查分式的基本性质,理解分式的基本性质(分式的分子,分母同时乘以或除以同一个不为零的数或式子,分式仍然成立)是解题关键6、A【分析】根据分式的基本性质,辨析判断即可【详解】,A正确;分式基本性质中,没有加法,B不正确;,C不正确;,D不正确;故选A【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键7、C【分析】形如: 都为整式,且中含有字母,这样的代数式是分式,根据分式的定义逐一判断即可.【详解】解:代数式,中,分式有: 一共有3个,故选:C【点睛】本题考查的是分式的定义,掌握“分式的定义”是解本题的关键.8、C【分析】根据分式
9、方程的定义判断选择即可【详解】A. ,是一元一次方程,不符合题意; B. ,是一元一次方程,不符合题意; C. ,是分式方程,符合题意; D. ,是一元一次方程,不符合题意故选:C【点睛】本题考查分式方程的定义掌握分式方程是指分母里含有未知数或含有未知数整式的有理方程是解答本题的关键9、A【分析】工程提前的天数原计划的天数实际用的天数,把相关数值代入即可【详解】解:原计划用的天数为,实际用的天数为, 故工程提前的天数为()天 故选:A【点睛】此题考查了列分式解决实际问题,正确理解题意是解题的关键10、D【分析】乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米
10、,甲走34千米,利用时间相等列出方程即可【详解】设乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,根据时间相等,得,故选D【点睛】本题考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键二、填空题1、300【分析】设池塘大约有x只,根据题意,得到,计算即可【详解】设池塘大约有x只,根据题意,得到,解得 x=300,经检验,x=300是原方程的根,故答案为:300【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键2、1【分析】由题意直接根据分式的值为零时分子等于零,分母不等于零进行分析计算即可【详解】解:因为分
11、式的值为零,所以,解得:.故答案为:1.【点睛】本题考查分式的值为零的条件注意掌握若分式的值为零,需同时具备两个条件分子为0,分母不为03、x1a,x2【分析】根据关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,得到规律求解即可【详解】解:关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,依规律,得x1a1或x1,解得:x1a,x2故答案为:x1a,x2【点睛】本题主要考查了与分式有关的规律型问题,解题的关键在于根据题意找到规律并且构造4、且【分析】根据二次根式的被开方数的非负性和分式的分母不能为0即可得【详
12、解】解:由题意得:,解得且,故答案为:且【点睛】本题考查了二次根式和分式,熟练掌握二次根式和分式有意义的条件是解题关键5、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球个从中任意摸出一球,摸出黑色球的概率是解得经检验,是原方程的解故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键概率=所求情况数与总情况数之比三、解答题1、;【分析】先根据分式运算法则进行化简,再确定符号题意的字母的值代入求即可【详解】解:因为且x是整数且和,所以,当时,原式【点睛】本题考查了分式的化简求值,解题关键是熟练运用分式运算法则,按照分式运算顺序化简,正确确定字母的值,代入求解2、1【分
13、析】先化简分式得到原式,再将代入即可得到结果【详解】解:,原式=1【点睛】本题考查了分式的化简求值:先进行分式的乘除运算(把分子或分母因式分解,约分),再进行分式的加减运算(即通分),然后把字母的值代入(或整体代入)进行计算3、(1)2,4;(2);(3)【分析】(1)按照“十字方程”的解法解方程即可;(2)根据“十字方程”的解法求出,代入求值即可;(3)把方程转化为,求出方程的解,代入计算即可【详解】(1)可化为,2,4; 故答案为:2,4;(2)解:,(3)解:为关于x的“十字方程”或或【点睛】本题考查了分式方程的特殊解法,解题关键是理解题意,按照题目中的方法进行求解4、(1)(2)【分析
14、】(1)先算乘方,最后根据有理数加减运算法则即可求出值;先算乘方和绝对值,再用乘法分配律进行计算,最后算加减;(2)去括号、移项、合并同类项、系数化为1即可求解;去分母、去括号、移项、合并同类项、系数化为1即可求解;(1)解:原式;原式(2)解: ; 【点睛】本题考查了有理数的混合运算以及解一元一次方程,掌握有理数混合运算顺序和解一元一次方程的一般步骤是解题的关键5、(1)一件B型商品的进价为150元,则一件A型商品的进价为160元;(2);(3)当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商
15、品并捐献慈善资金后获得的最大收益为元【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为元根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润两种商品的利润之和,列出式子即可解决问题;(3)设利润为元则,分三种情形讨论利用一次函数的性质即可解决问题(1)解:设一件B型商品的进价为x元,则一件A型商品的进价为元,由题意:,解得,经检验是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元;(2)解:客商购进A型商品m件,客商购进B型商品件,由题意:,A型商品的件数不大于B型的件数,且不小于80件,;(3)解:设收益为元,则,当时,即时,w随m的增大而增大,当时,最大收益为元;当,即时,最大收益为17500元;当时,即时,w随m的增大而减小,时,最大收益为元,当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【点睛】本题主要考查了分式方程的实际应用,一次函数的实际应用,熟练掌握相关知识及寻找题目的等量关系列式求解是解决本题的关键