2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转同步测试试题(无超纲).docx

上传人:知****量 文档编号:28183041 上传时间:2022-07-26 格式:DOCX 页数:28 大小:976.26KB
返回 下载 相关 举报
2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转同步测试试题(无超纲).docx_第1页
第1页 / 共28页
2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转同步测试试题(无超纲).docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转同步测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转同步测试试题(无超纲).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、八年级数学下册第三章图形的平移与旋转同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,点A的坐标为,沿x轴向右平移后得到,A点的对应点在直线上,则点与其对应点之间的距离为(

2、 )A4B6C8D102、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )A( - 1, - 3)B( - 1,3)C(1, - 3)D(3,1)3、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)4、下列图形中,既是中心对称图形又是轴对称图形的有几个()A1个B2个C3个D4个5、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD6、如图,在ABC中,BAC108,将ABC绕点A按逆时针方向旋转得到,若点刚好落

3、在BC边上,且,则C的度数为()A22B24C26D287、下列图形既是中心对称图形,又是轴对称图形的是( )ABCD8、下列交通标志中既是中心对称图形,又是轴对称图形的是( )ABCD9、如图,ABC中,C=84,CBA=56,将ABC挠点B旋转到DBE,使得DE/AB,则EBC的度数为( )A28B40C42D5010、已知点关于原点的对称点在一次函数的图象上,则实数的值为( )A1B-1C-2D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,将绕点C按逆时针方向旋转得到,点A的对应点为,点恰好在边上,则点与点B之间的距离为_2、在平面直角坐标系中,点

4、P(2,5)关于原点对称点P的坐标为_3、如图,平面直角坐标系中,是边长为2的等边三角形,作与关于点成中心对称,再作与于点成中心对称,如此作下去,则的顶点的坐标是_4、如图,在ABC中,ACB=90,A=30,AB=10如果将ABC绕点C按逆时针旋转到ABC的位置,并且点B恰好落在边AB上,则BB的长为_ 5、点关于原点对称的点的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,点与点关于射线对称,连接点为射线上任意一点,连接将线段绕点顺时针旋转60,得到线段,连接(1)求证:直线是线段的垂直平分线;(2)点是射线上一动点,请你直接写出与之间的数量关系2、已知ABC(ACBCAC

5、)绕点C顺时针旋转得DEC,射线AB交直线CD于点P,交射线DE于点F(1)如图1,AFD与BCE的关系是 ;(2)如图2,当旋转角为60时,点D、点B与线段AC的中点O恰好在同一直线上,延长DO至点G,使OGOD,连接GC请写出AFD与GCD的关系,并说明理由;若ACB45,CE4,请直接写出线段GC的长度3、如图,在等边三角形ABC中,点P为ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60得到 ,连接 (1)用等式表示 与CP的数量关系,并证明;(2)当BPC120时, 直接写出 的度数为 ;若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明4、如图,

6、方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点A的坐标为(1,-4)(1)A1B1C1是ABC关于y轴的对称图形,则点A的对称点A1的坐标是_,并在图中画出A1B1C1(2)将ABC绕原点逆时针旋转90得到A2B2C2,则A点的对应点A2的坐标是_,并在图中画出A2B2C2 5、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积-参考答案-一、单选题1、D【分析】先根据平移的特点可知所求的距离为,且,点纵坐标与点A纵坐标相等,再将其代入直线求出点横坐标,从而可知的长,即可得出答案【详解】解:A(0,6)沿x轴向右平移后得到,点的

7、纵坐标为6,令,代入直线得,的坐标为(10,6),由平移的性质可得,故选D【点睛】本题考查了平移的性质、一次函数图像上点的坐标特点,掌握理解平移的性质是解题关键2、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可【详解】解:两个点关于原点对称时,它们的坐标符号相反,点关于原点对称的点的坐标是故选:A【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律3、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO

8、平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小4、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称

9、图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A【点睛】本题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合5、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;

10、B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合6、B【分析】根据图形的旋转性质,得ABAB,已知ABCB,结合等腰三角形的性质及三角形的外角性质,得B、C的关系即可解决问题【详解】解:ABCB,CCAB,ABBC+CAB2C,将ABC绕点A按逆时针方向旋转得到ABC,CC,ABAB,BABB2C,B+C+CAB1

11、80,3C180108,C24,故选:B【点睛】本题主要考查了等腰三角形的性质及图形的旋转性质,得B、C的关系为解决问题的关键7、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意【点睛】

12、本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键8、C【分析】结合选项根据轴对称图形(把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称)与中心对称图形(指把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称)的概念求解即可【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,也不是中心对称图形故选:C【点睛】题目主要考查轴对称和中心对称图形的识别,深刻理解轴对称与中心对称图形的概念是解题关键9、B【分析】先求出A=40

13、,再根据旋转和平行得出DBA=40,进而可求EBC的度数【详解】解:ABC中,C=84,CBA=56,A=180-C -CBA=40,由旋转可知,D=A=40,EBC=DBA,DE/AB,D=DBA=40,EBC=DBA=40,故选:B【点睛】本题考查了旋转的性质和平行线的性质,解题关键是熟记旋转的性质,准确识图,正确进行推导计算10、B【分析】求出点关于原点的对称点的坐标,代入函数解析式中求解即可【详解】解:点关于原点的对称点的坐标为(-2,3),代入得,解得,故选:B【点睛】本题考查了关于原点对称的点的坐标特征和待定系数法,解题关键是求出对称点的坐标,熟练运用待定系数法求值二、填空题1、【

14、分析】由旋转的性质,可证、都是等边三角形,由勾股定理求出的长即可【详解】解:如图,连接,将绕点按逆时针方向旋转得到,是等边三角形,是等边三角形,在中,故答案为:【点睛】本题主要考查了旋转的性质,等边三角形的判定与性质,勾股定理等知识,解题的关键是熟练掌握旋转的性质2、(2,5)【分析】根据关于原点对称的两个点的坐标符号相反即可求解【详解】解:点P(2,5)关于原点的对称点P的坐标是(2,5)故答案为:(2,5)【点睛】本题考查了关于原点对称的点的坐标的特点,注意掌握两个点关于原点对称时,它们的坐标符号相反是解题关键3、【分析】首先根据是边长为2的等边三角形,可得的坐标为,的坐标为;然后根据中心

15、对称的性质,分别求出点、的坐标各是多少;最后总结出的坐标的规律,求出的坐标是多少即可【详解】解:是边长为2的等边三角形,的坐标为:,的坐标为:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,的横坐标是:,的横坐标是:,当为奇数时,的纵坐标是:,当为偶数时,的纵坐标是:,顶点的纵坐标是:,是正整数)的顶点的坐标是:,的顶点的横坐标是:,纵坐标是:,故答案为:【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的

16、性质,分别判断出的横坐标和纵坐标是解题的关键4、5【分析】先根据含30度的直角三角形三边的关系得BCAB5,在根据旋转的性质得CBCB,CBACBA60,则可判断BBC为等边三角形,然后根据等边三角形的性质求解【详解】解:ACB90,A30,AB10,BCAB5,ABC60,三角板ABC绕点C逆时针旋转,点B恰好落在边AB上,CBCB,CBACBA60,BBC为等边三角形,BBBC5故答案为:5【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角也考查了等边三角形的判定与性质、含30度的直角三角形三边的关系5、【分析】根据关于原

17、点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:由M(4,3)关于原点对称的点N的坐标是(4,3),故答案为:(4,3)【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键三、解答题1、(1)见解析;(2)或【分析】(1)由轴对称的性质和旋转变换的性质得出三角形全等的条件,由SAS推论出,转换证明出,即可得证所求;(2)画图可得,有两种情况【详解】(1)证明:连接,点与点关于射线对称, ,为等边三角形, 在和中,又垂直平分(2)分两种情况来讨论:第一种情况,如图,当点D在内部时: 点与点关于射线对称,第二种情况,如图,

18、当点D在外部时:点与点关于射线对称,【点睛】本题考察了线段垂直平分线的判定、全等三角形的性质和判定以及旋转变换的性质特点,利用旋转变换的性质推论出全等所需的条件,是本题的关键2、(1)AFDBCE;(2)AFDGCD或AFD+GCD180;2+2【分析】(1)先判断出BCEACD,再利用三角形的内角和定理,判断出ACDAFD,即可得出结论;(2)先判断出ACD是等边三角形,得出ADCD,再判断出ACDAFD,进而判断出AODCOG(SAS),得出ADCG,即可得出结论;先判断出GCBBCE,进而判断出GCBACE,进而判断出GCBACE,得出BCCE4,最后用勾股定理即可得出结论【详解】解:(

19、1)如图1,AF与CD的交点记作点N,由旋转知,ACBDCE,AD,BCEACD,ACD180AANC,AFD180DDNF,ANCDNF,ACDAFD,AFDBCE,故答案为:AFDBCE; (2)AFDGCD或AFD+GCD180,理由:如图2,连接AD,由旋转知,CABCDE,CACD,ACD60,ACD是等边三角形,AMCDMF,CABCDE,ACDAFD60,O是AC的中点,AOCO,ODOG,AODCOG,AODCOG(SAS),ADCG,CGCD,GCD2ACD120,AFDGCD或AFD+GCD180,由知,GCD120,ACDBCE60,GCAGCDACD60,GCABCE,

20、GCBGCA+ACB,ACEBCE+ACB,GCBACE,由知,CGCD,CDCA,CGCA,BCEC4,GCBACE(SAS),GBAE,CGCD,OGOD,COGD,COGCOB90ACB45,ACBCBO45,BOOC,BC4,GCA60,G30,GBOG+BO2+2,AE2+2【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质与判定,勾股定理,熟练运用全等三角形的判定与性质是解本题的关键3、(1),理由见解析;(2)60;PM,见解析【分析】(1)根据等边三角形的性质,可得ABAC,BAC60,再由由旋转可知:从而得到,可证得,即可求解 ;(2

21、)由BPC120,可得PBCPCB60根据等边三角形的性质,可得BAC60,从而得到ABCACB120,进而得到ABPACP60再由,可得 ,即可求解;延长PM到N,使得NMPM,连接BN可先证得PCMNBM从而得到CPBN,PCMNBM进而得到 根据可得,可证得,从而得到 再由 为等边三角形,可得 从而得到 ,即可求解【详解】解:(1) 理由如下:在等边三角形ABC中,ABAC,BAC60,由旋转可知: 即在和ACP中 (2)BPC120,PBCPCB60在等边三角形ABC中,BAC60,ABCACB120,ABPACP60 ,ABPABP60即 ;PM 理由如下:如图,延长PM到N,使得N

22、MPM,连接BNM为BC的中点,BMCM在PCM和NBM中 PCMNBM(SAS)CPBN,PCMNBM BPC120,PBCPCB60PBCNBM60即NBP60ABCACB120,ABPACP60ABPABP60即 在PNB和 中 (SAS) 为等边三角形, ,PM 【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键4、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1)【分析】(1)根据网格结构,找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后

23、顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构,找出点A、B、C绕点逆时针旋转90的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可【详解】解:(1)如图所示,A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,A2B2C2即为所求作的三角形,点A2(4,1)故答案为:(4,1)【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴5、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可【详解】解:的顶点坐标分别为,绕点顺时针旋转,得到,点A1横坐标-1+5-(-1)=5,纵坐标-1+-1-(-4)=2,A1(5,2),点B1横坐标-1+2-(-1)=2,纵坐标-1+-1-(-5)=3,B1(2,3),点C1横坐标-1+4-(-1)=4,纵坐标-1+-1-(-3)=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1, B1C1,C1A1,则A1B1C1为所求;,=,=,=2【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁