《2022年最新浙教版初中数学七年级下册第五章分式定向练习试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年最新浙教版初中数学七年级下册第五章分式定向练习试题(含解析).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式定向练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列各式与相等的是( )AB-2C2D2、已知, , ,则m, n, p的大小关系是( )Am p nBn m pCp n mDn p 、)3、计算:(1)0_,(5)2_4、_(结果不含负指数)5、有一批的新冠肺炎疫苗需要在规定日期内完成生产,如果交给中国独做,恰好如期完成,如果美国独做,就要超过规定4天,现在由中国和美国合作2天,剩下的由美国独做,也刚好在规定日期内完成,问中国独自完成这一批新冠肺炎疫苗需
2、要_天三、解答题(5小题,每小题10分,共计50分)1、计算:(1)(3.14)0+()1+(1)2021;(2)(x+1)2x(x+2)2、先化简,再求值:,其中3、解方程:4、解方程(组):(1);(2)5、计算或化简:(1)(3)0(0.2)2009(5)2010 (2)2(x4)(x4)(3)(x2)2(x1)(x1)-参考答案-一、单选题1、D【分析】根据负指数幂可直接进行求解【详解】解:由题意得:;故选D【点睛】本题主要考查负指数幂,熟练掌握负指数幂的算法是解题的关键2、D【分析】根据零指数幂、负指数幂以及乘方的运算求得,比较即可【详解】解:,故选D【点睛】此题考查了零指数幂、负指
3、数幂以及乘方的运算,涉及了有理数大小的比较,解题的关键是根据有关运算,正确求出的值3、C【分析】把,的值同时扩大2倍后,运用分式的基本性质进行化简,即可得出结论【详解】解:A选项,把,的值同时扩大2倍后得:,值发生了变化,故该选项不符合题意;B选项,把,的值同时扩大2倍后得:,值缩小了一半,故该选项不符合题意;C选项,把,的值同时扩大2倍后得:,值不变,故该选项符合题意;D选项,把,的值同时扩大2倍后得:,值变成了原来的2倍,故该选项不符合题意;故选:C【点睛】本题考查了分式的基本性质,掌握分式的基本性质是解题的关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变4、B【分析】
4、科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.0000000089=,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值5、D【分析】根据零次幂、多项式乘多项式、完全平方公式及同底数幂的除法法则分别对每一项进行分析,即可得出答案【详解】解:若,则或,错误;,不含项则,解得,正确;,所以,错误;,正确综上所述,正确故选D【点睛】
5、本题考查了零次幂、多项式乘多项式、完全平方公式以及同底数幂的除法,熟练掌握运算法则是解题的关键6、C【分析】根据可得,将代入化简可得结果【详解】解:,将代入中得:,故选:C【点睛】本题考查了分式的化简求值,将代入中约分化简是解题的关键7、D【分析】根据负整数指数幂的意义计算即可【详解】解:故选D【点睛】本题考查了负整数指数幂的运算,任何不等于0的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数,即(a0,p是正整数);0的负整数指数幂没有意义8、D【分析】根据除0之外的任何数的零次幂都等于1即可判定A、B、D,根据幂的混合运算法则即可判断C【详解】解:A、,有意义,故此选项不符合题意;B、
6、除0外的任何数的0次幂都等于1,故此选项不符合题意;C、,故此选项不符合题意;D、若,则,故此选项符合题意;故选D【点睛】本题主要考查了幂的运算,零指数幂,解题的关键在于能够熟练掌握相关计算法则9、D【分析】根据负整数指数幂的性质计算即可;【详解】;故选D【点睛】本题主要考查了负整数指数幂,准确计算是解题的关键10、B【分析】根据负指数幂运算法则a-p=(a0,p为正整数),零指数幂运算法则:a0=1(a0)进行计算即可得出答案【详解】解:原式=故选:B【点睛】本题主要考查了负指数幂及零指数幂,熟练应用负指数幂和零指数幂的运算法则进行计算是解决本题的关键二、填空题1、【分析】用科学记数法表示较
7、小的数,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】故答案为:【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键2、=【分析】本题只需要先对M、N分别进行化简,再把代入即可比较M、N的大小【详解】解:,MN,故答案为:【点睛】本题考查了分式的混合运算,在解题时要注意先对分式进行化简,再代入求值即可3、1 【分析】根据零指数幂、负整数指数幂的运算法则解答即可【详解】解:,故答案为:1,【点睛】本题考查了零指数幂、负整数指数幂,解题的关键是熟练掌握零指数幂、
8、负整数指数幂的运算法则4、【分析】根据负指数幂的运算法则和积的乘方运算法则求解即可【详解】解:,故答案为:【点睛】此题考查了负指数幂的运算,解题的关键是熟练掌握负指数幂的运算法则和积的乘方运算法则5、4【分析】设中国需要x天,则美国需要(x+4)天,结合等量关系“中国2天的工作量+美国x天的工作量=工作总量”列出方程即可;【详解】解:设中国需要x天,由题意可得:, 解得x=4经检验:x=4是方程的解,且符合题意,故答案为:4【点睛】本题考查分式方程的应用解决本题的关键是得到工作量11的等量关系;易错点是得到甲乙两队各自的工作时间三、解答题1、(1);(2)【分析】(1)根据零次幂,负整指数幂,
9、有理数的乘法运算计算即可;(2)根据完全平方公式,整式的混合运算计算即可【详解】(1)(3.14)0+()1+(1)2021;(2)(x+1)2x(x+2)【点睛】本题考查了零次幂,负整指数幂,有理数的乘法运算,整式的混合运算,正确的计算是解题的关键2、;1【分析】将分式通分相加然后约分,代入求值即可【详解】解:原式=,当时,原式=1【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键3、【分析】先去分母,化为整式方程,解出整式方程,然后再检验,即可求解【详解】解:去分母,方程两边都乘以得:,整理得:,检验:当时,原方程的解为:【点睛】本题主要考查了解分式方程,熟练掌握解分式方
10、程的基本步骤是解题的关键4、(1);(2)【分析】(1)根据代入消元法解二元一次方程组即可;(2)将分式方程转化为整式方程,求解验根即可【详解】解:(1)由得代入得, , 方程组的解为; (2) 经检验,是原方程的解 【点睛】本题主要考查了解二元一次方程组以及解分式方程,熟练掌握解二元一次方程组的两种消元方法以及解分式方程的一般步骤是解题的关键,注意解分式方程需要验根5、(1)6;(2)2x232;(3)4x5【分析】(1)第一项根据零指数幂计算,第二项根据积的乘方逆运算计算;(2)先根据平方差公式计算,再去括号即可;(3)先根据完全平方公式、平方差公式计算,再合并同类项;【详解】解:(1)原式1(0.2)2009(5)2009(5)1(0.25)20095156;(2)原式2(x216)2x232;(3)原式x24x4x214x5【点睛】本题主要考查了整式的混合运算,熟练掌握平方差公式,完全平方公式,积的乘方法则是解答本题的关键