《2022年强化训练京改版九年级数学下册第二十三章-图形的变换单元测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年强化训练京改版九年级数学下册第二十三章-图形的变换单元测试练习题(无超纲).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ABC90,AB6,BC8把ABC绕点A逆时针方向旋转到ABC,点B恰好落在AC边上,则C
2、C()A10B2C2D42、在平面直角坐标系中,点关于轴的对称点的坐标是( )ABCD3、如图,在中,点为边上一点,将沿直线翻折得到,与边交于点E,若,点为中点,则的长为( )AB6CD4、点P( 5,3 )关于y轴的对称点是 ( )A(5, 3 )B(5,3)C(5,3 )D(5,3 )5、如图,若绕点A按逆时针方向旋转40后与重合,则( ) A40B50C70D1006、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )ABCD7、下列图形中,不是位似图形的是( )ABCD8、如图,将绕点逆时针旋转55得到,若,则的度数是( )A25B30C35D759、中国剪纸是一种用
3、剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”下列四个剪纸图案是轴对称图形的为( )ABCD10、下面4个图形中,不是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,若点P关于x轴的对称点Q的坐标是(3,2),则点P关于y轴的对称点R的坐标是_2、如图,在矩形中,将矩形绕
4、点按顺时针方向旋转得到矩形,点落在矩形的边上,则的长是 _3、如图,把一张长方形的纸条按如图那样折叠后,若量得DBA40,则ABC的度数为 _度4、将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则CBD大小为 _度5、如图,已知ABC中,ABAC,将ABC沿DF折叠,点A落在BC边上的点E处,且DEBC于E,若A56,则AFD的度数为_三、解答题(5小题,每小题10分,共计50分)1、已知矩形ABCD,AB=6,BC=10,以BC所在直线为x轴,AB所在直线为y轴,建立如图所示的平面直角坐标系,在CD边上取一点E,将ADE沿AE翻折,点D恰好落在BC边上的点F处(1)求线段EF长;(
5、2)在平面内找一点G,使得以A、B、F、G为顶点的四边形是平行四边形,请直接写出点G的坐标;如图2,将图1翻折后的矩形沿y轴正半轴向上平移m(m0)个单位,若以A、O、F、G为顶点的四边形为菱形,请求出m的值并写出点G的坐标2、如图,在RtABC中,ACB=90,BAC=30,将线段CA绕点C逆时针旋转60,得到线段CD,连接AD,BD(1)依题意补全图形;(2)若BC=1,求线段BD的长3、如图,在ABC中,AC=BC,ACB=90,点D是边AB上的动点,连接CD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F(1)在图中,依题意补全图形;(2)记DCB=(45),求BAF的大小
6、;(用含的式子表示)(3)若BCE是等边三角形,猜想EF和AB的数量关系,并证明你的结论4、在平面直角坐标系中,的顶点坐标分别为(1)关于y轴的对称图形为画出,(点A与点对应,点B与点对应,点C与点对应);(2)连接,在的下方画出以为底的等腰直角,并直接写出点P的坐标5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点A的坐标为(1,-4)(1)A1B1C1是ABC关于y轴的对称图形,则点A的对称点A1的坐标是_,并在图中画出A1B1C1(2)将ABC绕原点逆时针旋转90得到A2B2C2,则A点的对应点A2的坐标是_,并在图中画出A2B
7、2C2 -参考答案-一、单选题1、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB,BC= BC,从而求出BC,即可在RtBCC中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可知,AB= AB=6,BC= BC=8,BC=10-6=4,在RtBCC中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键2、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B【点睛】此题主要考查了关于x轴的对称
8、点的坐标,关键是掌握点的坐标的变化规律3、A【分析】由折叠的性质可得,然后证明,得到,设,即可推出,从而得到,则,从而得到,再由,求解即可【详解】解:由折叠的性质可得,AB=AC,B=C,又,E是CD的中点,DE=CE,设,解得,故选A【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件4、B【分析】根据两点关于y轴对称的特征是两点的横坐标互为相反数,纵坐标不变即可求出点的坐标【详解】解:所求点与点P(5,3)关于y轴对称,所求点的横坐标为5,纵坐标为3,点P(5,3)关于y轴的对称点是(5,3)故选B【点睛】本题考查
9、两点关于y轴对称的知识;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标相同5、C【分析】根据旋转的性质,可得 , ,从而得到,即可求解【详解】解:绕点A按逆时针方向旋转40后与重合, , , 故选:C【点睛】本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键6、C【分析】根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解【详解】解:点的坐标是,点与点关于轴对称,的坐标为,故选:C【点睛】本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键7、D【分析】对应顶点的连线相交于
10、一点的两个相似多边形叫位似图形【详解】解:根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;D中的两个图形不符合位似图形的概念,两个三角形不相似,故不是位似图形故选D【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点8、C【分析】由旋转的性质可得出答案【详解】解:将OAB绕点O逆时针旋转55后得到OCD,AOC=55,AOB=20,BOC=AOC-AOB=55-20=35,故选:C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、
11、后的图形全等9、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键10、D【分析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、矩形是轴对称图形,故本选项不符合题意;B、菱形是轴对称图形,故本选项不符合题意;C、正方形是轴对称图形,故本选项不符合题意;D、平行四边形不是轴对称图形,故本选项符合题意故选:D【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠
12、后可重合二、填空题1、【分析】根据题意直接利用关于x轴、y轴对称点的性质进行分析即可得出答案【详解】解:点P关于x轴的对称点Q的坐标是(3,2),点P的坐标为(3,2),点P关于y轴的对称点R的坐标是(3,2),故答案为:(3,2)【点睛】本题主要考查关于x轴、y轴对称点的性质,正确掌握横、纵坐标的关系是解题的关键2、4【分析】根据矩形的性质和旋转性质得出BH=AB=5,C=90,再根据勾股定理求解即可【详解】解:由题意知:,C=90,在RtBCH中,BC=3,故答案为:4【点睛】本题考查矩形的性质、旋转性质、勾股定理,熟练掌握旋转性质和勾股定理是解答的关键3、70【分析】由DBA的度数可知A
13、BE度数,再根据折叠的性质可得ABCEBCABE即可【详解】解:延长DB到点E,如图:DBA40,ABE180DBA18040140,又把一张长方形的纸条按如图那样折叠,ABCEBCABE70,故答案为:70【点睛】本题主要考查了折叠的性质和邻补角的定义,属于基础题目,得到ABCABE是解题的关键4、90【分析】根据折叠的性质得到ABC=ABC,EBD=EBD,再根据平角的定义有ABC+ABC+EBD+EBD=180,易得ABC+EBD=180=90,则CBD=90【详解】因为一张长方形纸片沿BC、BD折叠,所以ABC=ABC,EBD=EBD,而ABC+ABC+EBD+EBD=180,所以AB
14、C+EBD=180=90,即CBD=90故答案为:90【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应相等相等也考查了平角的定义5、4848度【分析】先求出ABC和ACB的度数,再利用直角三角形的性质得出BDE的度数,根据由翻折的性质可得:,最后利用三角形的内角和定理得出结论【详解】解:ABAC,A56,DEBC,由折叠的性质可得:,AFD=180-A-ADF=180-56-76=48,故答案为:48【点睛】本题考查了等腰三角形的性质,轴对称的性质,直角三角形的性质及三角形的内角和定理,解题的关键是熟练掌握这些性质三、解答题1、(1) ;(2)点G的坐标为(8,6)或(8,
15、6)或(8,6);或或【分析】(1)由矩形的性质得ADBCOC10,CDABOA6,AOCECF90,由折叠性质得EFDE,AFAD10,则CE6EF,由勾股定理求出BFOF8,则FCOCOF2,在RtECF中,由勾股定理得出方程,解方程即可;(2)分三种情况,当AB为平行四边形的对角线时;当AF为平行四边形的对角线时;当BF为平行四边形的对角线时,分别求解点G的坐标即可;分三种情况讨论,当为对角线时,由菱形的性质得OAAF10,则矩形ABCD平移距离mOAAB4,即OB4,设FG交x轴于H,证出四边形OBFH是矩形,得FHOB4,OHBF8,则HG6,如图,当为菱形的对角线时,当为菱形的对角
16、线时,结合矩形与菱形的性质同理可得出答案【详解】解:(1)四边形ABCD是矩形,ADBCOC10,CDABOA6,AOCECF90,由折叠性质得:EFDE,AFAD10,CECDDECDEF6EF,由勾股定理得:BFOF,FCOCOF1082,在RtECF中,由勾股定理得:EF2CE2+FC2,即:EF2(6EF)2+22,解得:EF;(2)如图所示:当AB为平行四边形的对角线时,AGBF8,点G的坐标为:(8,6);当AF为平行四边形的对角线时,AGBF8,点G的坐标为:(8,6);当BF为平行四边形的对角线时,FGAB6,点G的坐标为:(8,6);综上所述,点G的坐标为(8,6)或(8,6
17、)或(8,6);如图,当为菱形的对角线时,四边形AOGF为菱形,OAAF10,矩形ABCD平移距离mOAAB1064,即OB4,设FG交x轴于H,如图所示:,轴,FBOBOHOHF90,四边形OBFH是矩形,FHOB4,OHBF8,HG1046,点G的坐标为:(8,6)如图,当为菱形的对角线时,则 如图,当为菱形的对角线时, 同理可得: 且 解得: 所以即 综上:平移距离与的坐标分别为:或或【点睛】本题是四边形综合题目,考查了矩形的判定与性质、菱形的判定与性质,坐标与图形性质、平行四边形的性质、勾股定理、折叠变换的性质、平移的性质等知识;熟练掌握矩形的性质和折叠的性质是解题的关键2、(1)见解
18、析;(2)【分析】(1)根据线段旋转的方法,得出,然后连接AD,BD即可得;(2)根据角的直角三角形的性质和勾股定理可得,由旋转的性质可得是等边三角形,再利用勾股定理求解即可【详解】解:(1)根据线段旋转方法,如图所示即为所求; (2) , , , 线段CA绕点C逆时针旋转60得到线段CD,且,是等边三角形, , , 在中,【点睛】题目主要考查旋转图形的作法及性质,勾股定理,角的直角三角形的性质,等边三角形的性质等,理解题意,作出图形,综合运用各个定理性质是解题关键3、(1)见解析;(2);(3),证明见解析【分析】(1)根据轴对称即可得出结论;(2)先判断出,再表示出BAF,即可得出结论;(
19、3)先判断出是直角三角形,结合是等边三角形,即可得出结论【详解】解:(1)如图所示;(2)连接由题意可知,即(3),证明:是等边三角形,由(2)可知点B关于直线CF的对称点为点E,是直角三角形,且【点睛】此题是几何变换综合题,主要考查了轴对称的性质,直角三角形的判定和性质,等边三角形的判定和性质,判断出BCF是直角三角形是解本题的关键4、(1)作图见解析;(2)作图见解析,【分析】(1)分别求出A,B,C关于y轴对称的点,连接即可;(2)根据轴对称的性质计算即可;【详解】(1)由题可知,A,B,C关于y轴对称的点为,作图如下;(2)根据题意可得:,设与y轴交于点M,则是等腰直角三角形,;【点睛
20、】本题主要考查了轴对称的性质应用和等腰直角三角形的性质,准确作图计算是解题的关键5、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1)【分析】(1)根据网格结构,找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构,找出点A、B、C绕点逆时针旋转90的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可【详解】解:(1)如图所示,A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,A2B2C2即为所求作的三角形,点A2(4,1)故答案为:(4,1)【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴