2022年必考点解析沪科版九年级数学下册第24章圆同步训练试题(含详解).docx

上传人:知****量 文档编号:28181703 上传时间:2022-07-26 格式:DOCX 页数:40 大小:1.57MB
返回 下载 相关 举报
2022年必考点解析沪科版九年级数学下册第24章圆同步训练试题(含详解).docx_第1页
第1页 / 共40页
2022年必考点解析沪科版九年级数学下册第24章圆同步训练试题(含详解).docx_第2页
第2页 / 共40页
点击查看更多>>
资源描述

《2022年必考点解析沪科版九年级数学下册第24章圆同步训练试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析沪科版九年级数学下册第24章圆同步训练试题(含详解).docx(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )ABCD2、图2是由图1经过某一种图形的运动得到的,这种图

2、形的运动是( )A平移B翻折C旋转D以上三种都不对3、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A不变B面积扩大为原来的3倍C面积扩大为原来的9倍D面积缩小为原来的4、如图,在RtABC中,ABC90,AB6,BC8把ABC绕点A逆时针方向旋转到ABC,点B恰好落在AC边上,则CC()A10B2C2D45、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD6、如图,与的两边分别相切,其中OA边与相切于点P若,则OC的长为( )A8BCD7、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )ABCD8、

3、如图,都是上的点,垂足为,若,则的度数为( )ABCD9、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm10、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70,则P的度数为( ) A70B50C20D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在O中,A,B,C是O上三点,如果AOB=70,那么C的度数为_2、如图,在RtABC,B=90,AB=BC=1,将ABC绕着点C逆时针旋转60,得到MNC,那么BM=_3、已知O、I分别是ABC的外心和内心,BI

4、C125,则BOC的大小是 _度4、如图,已知扇形的圆心角为60,半径为2,则图中弓形(阴影部分)的面积为_5、如图,正方形ABCD的边长为1,O经过点C,CM为O的直径,且CM1过点M作O的切线分别交边AB,AD于点G,HBD与CG,CH分别交于点E,F,O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部)给出下列四个结论:HD2BG;GCH45;H,F,E,G四点在同一个圆上;四边形CGAH面积的最大值为2其中正确的结论有 _(填写所有正确结论的序号)三、解答题(5小题,每小题10分,共计50分)1、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)(1)请在第二象限内

5、的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;(2)画出以点为中心,旋转180后的,并求的面积2、如图,抛物线yx2与x轴负半轴交于点A,与y轴交于点B(1)求A,B两点的坐标;(2)如图1,点C在y轴右侧的抛物线上,且ACBC,求点C的坐标;(3)如图2,将ABO绕平面内点P顺时针旋转90后,得到DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上 求点F的坐标;直接写出点P的坐标 3、如图AB是O的直径,弦CDAB于点E,作FAC=BAC,过点C作CFAF于点F(1)求证:CF是O的切线;(2)若sinCAB=,求=_(直接写出答案)4、如图,抛

6、物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,且OBOC(1)求a的值;(2)点D是该抛物线的顶点,点P(m,n)是第三象限内抛物线上的一个点,分别连接BD、BC、CD、BP,当PBACBD时,求m的值;(3)点K为坐标平面内一点,DK2,点M为线段BK的中点,连接AM,当AM最大时,求点K的坐标5、解题与遐想如图,RtABC的内切圆与斜边AB相切于点D,AD4,BD5求RtABC的面积王小明:这道题算出来面积刚好是20,太凑巧了吧刚好是4520,有种白算的感觉赵丽华:我把4和5换成m、n再算一遍,ABC的面积总是mn!确实非常神奇了数学刘老师:大家想一想,既

7、然结果如此简单到极致,不计算能不能得到呢?比如,拼图?霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了我怎么想不出来呢?计算验证(1)通过计算求出RtABC的面积拼图演绎(2)将RtABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明尺规作图(3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个RtABC,使它的内切圆与斜边AB相切于点D(保留作图的痕迹,写出必要的文字说明)-参考答案-一、单选题1、D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一

8、点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、C【详解】解:根据图形可知,这种图形

9、的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键3、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案【详解】设原来扇形的半径为r,圆心角为n,原来扇形的面积为,扇形的半径扩大为原来的3倍,圆心角缩小为原来的,变化后的扇形的半径为3r,圆心角为,变化后的扇形的面积为,扇形的面积不变故选:A【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键4、D【分析】首先运用勾股定理求出AC的长度

10、,然后结合旋转的性质得到AB= AB,BC= BC,从而求出BC,即可在RtBCC中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可知,AB= AB=6,BC= BC=8,BC=10-6=4,在RtBCC中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键5、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结O

11、C,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90-B=60,OCD=OCA=30,在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC=360-OAC-ACD-ODC=360-90-90-60=120,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键6、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到CPO

12、=90,COP=45,由此推出CP=OP=4,再根据勾股定理求解即可【详解】解:如图所示,连接CP,OA,OB都是圆C的切线,AOB=90,P为切点,CPO=90,COP=45,PCO=COP=45,CP=OP=4,故选C【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键7、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】本题主要考查圆的基本性质、直角三角

13、形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键8、B【分析】连接OC根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC,和分别是所对的圆周角和圆心角,故选:B【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键9、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC

14、=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键10、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90,ACB=70,AOB=2P=140,P=360-OAP-OBP-AOB=40故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用

15、二、填空题1、35【分析】利用圆周角定理求出所求角度数即可【详解】解:与都对,且,故答案为:【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理2、【分析】设BN与AC交于D,过M作MFBA于F,过M作MEBC于E,连接AM,先证明EMCFMA得ME=MF,从而可得CBD=45,CDB=180-BCA-CBD=90,再在RtBCD、RtCDM中,分别求出BD和DM,即可得到答案【详解】解:设BN与AC交于D,过M作MFBA于F,过M作MEBC于E,连接AM,如图:ABC绕着点C逆时针旋转60,ACM=60,CA=CM,ACM是等边三角形,CM=AM,ACM=MAC=60,B=90,AB

16、=BC=1,BCA=CAB=45,AC=CM,BCM=BCA+ACM=105,BAM=CAB+MAC=105,ECM=MAF=75,MFBA,MEBC,E=F=90,由得EMCFMA,ME=MF,而MFBA,MEBC,BM平分EBF,CBD=45,CDB=180-BCA-CBD=90,RtBCD中,BD=BC=,RtCDM中,DM=CM =,BM=BD+DM=,故答案为:【点睛】本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明CDB=903、140【分析】作的外接圆,根据三角形内心的性质可得:,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得【详解】解:如

17、图所示,作的外接圆,点I是的内心,BI,CI分别平分和,点O是的外心,故答案为:140【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键4、【分析】根据弓形的面积=扇形的面积-三角形的面积求解即可【详解】解:如图,ACOB,圆心角为60,OA=OB,OAB是等边三角形,OC=OB=1,AC=,SOAB=OBAC=2=,S扇形OAB=,弓形(阴影部分)的面积= S扇形OAB- SOAB=,故答案为:【点睛】本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键5、

18、【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,HCM=HCD,GM=GB,GCB=GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明GHF+GEF=180,取GH的中点P,连接PA,则PA+PCAC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可【详解】GH是O的切线,M为切点,且CM是O的直径,CMH=90,四边形ABCD是正方形,CMH=CDH=90,CM=CD,CH=CH,CMHCDH,HD=HM,HCM=HCD,同理可证,GM=GB,GCB=GCM,GB+DH=GH,无法确定HD2BG,故错误;HCM+HCD+GCB+

19、GCM=90,2HCM+2GCM=90,HCM+GCM=45,即GCH45,故正确;CMHCDH,BD是正方形的对角线,GHF=DHF,GCH=HDF=45,GHF+GEF=DHF +GCH+EFC=DHF +HDF+HFD=180,根据对角互补的四边形内接于圆,H,F,E,G四点在同一个圆上,故正确;正方形ABCD的边长为1,=1=,GAH=90,AC=取GH的中点P,连接PA,GH=2PA,=,当PA取最小值时,有最大值,连接PC,AC,则PA+PCAC,PAAC- PC,当PC最大时,PA最小,直径是圆中最大的弦,PC=1时,PA最小,当A,P,C三点共线时,且PC最大时,PA最小,PA

20、=-1,最大值为:1-(-1)=2-,四边形CGAH面积的最大值为2,正确;故答案为: 【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键三、解答题1、(1)图见解析,点的坐标为(2)图见解析,4【分析】(1)根据题意,腰长为无理数且为以AB为底的等腰三角形,只在第二象限,作图即可确定点,然后写出点的坐标即可;(2)现确定旋转后的点,然后依次连接即可,根据旋转前后三角形的面积不变,利用表格及勾股定理确定三角形的底和高,即可得出面积(1)解:如图所示,点的坐标为;,为无理

21、数,符合题意;(2)如图所示:点的坐标,点的坐标为,旋转180后的的面积等于的面积, ,的面积为4【点睛】题目主要考查等腰三角形的定义及旋转图形的作法,理解题意,熟练掌握在坐标系中旋转图形的作法是解题关键2、(1)A(-1,0),B(0,2);(2)点C的坐标(,);(3)求点F的坐标(1,2);点P的坐标(,)【分析】(1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;(2)设C的坐标为(x,x2),根据ACBC,得到,令t=x,解方程即可;(3)根据题意,得BPE=90,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点

22、,从而确定点P在抛物线的对称轴上,点F在BE上,且BEx轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;根据BE=3,BPE=90,PB=PE,确定P到BE的距离,即可写出点P的坐标【详解】(1)令x=0,得y=2,点B的坐标为B(0,2);令y=0,得x2=0,解得 点A在x轴的负半轴;A点的坐标(-1,0);(2)设C的坐标为(x,x2),ACBC,A(-1,0),B(0,2),A(-1,0),B(0,2),即,设t=x,整理,得,解得点C在y轴右侧的抛物线上,此时y=,点C的坐标(,);(3)如图,根据题意,得BPE=90,PB=PE即点P在线段BE

23、的垂直平分线上,B,E都在抛物线上,B,E是对称点,点P在抛物线的对称轴上,点F在BE上,且BEx轴,抛物线的对称轴为直线x=,B(0,2),点E(3,2),BE=3,EF=BO=2,BF=1,点F的坐标为(1,2);如图,设抛物线的对称轴与BE交于点M,交x轴与点N,BE=3,BM=,BPE=90,PB=PE,PM=BM=,PM=BM=,PN=2-=,点P的坐标为(,)【点睛】本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键3、(1)见解析(2)【分析】(1)如图,连接O

24、C,根据等腰三角形的性质可得CAB=ACO,即可得出FAC=ACO,可得AF/OC,根据平行线的性质可得AFC+OCF=180,根据CFAF可得OCF=90,即可得出CF是O的切线;(2)利用AAS可证明AFCAEC,可得SAFC=SAEC,根据垂径定理可得CE=DE,可得SBCD=2SBCE,根据AB是直径可得ACB=90,根据角的和差关系可得BCE=CAB,根据正弦的定义可得,可得BE=,AB=,进而可得AE=,根据三角形面积公式即可得答案(1)(1)如图,连接OC,OA=OC,CAB=ACO,FAC=BAC,FAC=ACO,AF/OC,AFC+OCF=180,CFAF,OCF=90,即O

25、CCF,CF是O的切线(2)在AFC和AEC中,AFCAEC,SAFC=SAEC,AB是O的直径,CDAB,CE=DE,SBCD=2SBCE,BCE+CBA=90,CAB+CBA=90,BCE=CBA,sinCAB=,sinCAB=sinBCE=,BE=,AB=,AE=,=故答案为:【点睛】本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键4、(1)

26、(2)(3)【分析】(1)先求得,点的坐标,进而根据即可求得的值;(2)过点作轴于点,证明是直角三角形,进而,根据相似的性质列出比例式进而代入点的坐标解方程即可;(3)接,取的中点,连接,根据题意,点在以为圆心,2为半径的圆上,则在以为圆心,为半径的圆上运动,根据点与圆的距离求最值,进而求得的解析式为,根据,设直线的解析式为,将点代入求得,进而设,根据,进而根据勾股定理列出方程解方程求解即可(1)令,解得令,抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线与轴的交点为解得(2)如图,过点作轴于点,是直角三角形,且又在抛物线上,整理得解得(舍)在第三象限,

27、(3)如图,连接,取的中点,连接,是的中位线根据题意点在以为圆心,2为半径的圆上,则在以为圆心,为半径的圆上运动,当三点共线,且在的延长线上时,最大,如图,即设直线的解析式为,代入点,即解得直线的解析式为设直线的解析式为解得则的解析式为设点,解得(舍去)【点睛】本题考查了二次函数综合运用,点与圆的距离求最值问题,相似三角形的性质与判定,正确的添加辅助线并熟练掌握以上知识是解题的关键5、(1)SABC20;(2)见解析;(3)见解析【分析】(1)设O的半径为r,由切线长定理得,AEAD4,BFBD5,CECFr,由勾股定理得,(r+4)2+(r+5)292,进而求得结果;(2)根据切线长定理可证

28、明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;(3)可先计算AFB135,根据“定弦对定角”作F点的轨迹,根据切线性质,过点F作AB的垂线,再根据直径所对的圆周角是90,确定点C【详解】解:(1)如图1,设O的半径为r,连接OE,OF,O内切于ABC,OEAC,OFBC,AEAD4,BFBD5,OECOFCC90,四边形ECFO是矩形,CFOEr,CEOFr,AC4+r,BC5+r,在RtABC中,由勾股定理得,(r+4)2+(r+5)292,r2+9r20,SABC20;(2)如图2,(3)设ABC的内切圆记作F,AF和BF平分BAC和ABC,FDAB,BAFCAB,ABF,BAF+ABF(BAC+ABC)45,AFB135,可以按以下步骤作图(如图3):以BA为直径作圆,作AB的垂直平分线交圆于点E,以E为圆心,AE为半径作圆,过点D作AB的垂线,交圆于F,连接EF并延长交圆于C,连接AC,BC,则ABC就是求作的三角形【点睛】本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁