《2022年北师大版八年级数学下册第一章三角形的证明专项训练试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年北师大版八年级数学下册第一章三角形的证明专项训练试卷(名师精选).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列以a,b,c为边的三角形不是直角三角形的是( )Aa1,b1,c2Ba2,b3,c13Ca3,b5,c7
2、Da6,b8,c102、如图,已知RtABC中,C90,A30,在直线BC上取一点P,使得PAB是等腰三角形,则符合条件的点P有( )A1个B2个C3个D4个3、如图,在ABC中,分别以点A和点C为圆心,大于AC的长为半径画弧交于两点,过这两点作直线交AC于点E,交BC于点D,连接AD若ADB的周长为15,AE4,则ABC的周长为()A17B19C21D234、如图,在ABC中,AB=AC,BAC=120,D是BC的中点,连结AD,AE是BAD的平分线,DFAB交AE的延长线于点F,若EF=3,则AE的长是( )A3B6C9D125、一副三角板如图放置,点A在DF的延长线上,DBAC90,E3
3、0,C45,若BC/DA,则ABF的度数为()A15B20C25D306、如图,在RtABC中,ACB=90,BAC=30,ACB的平分线与ABC的外角的平分线交于E点,连接AE,则AEC的度数是( )A45B40C35D307、如图,在ABC中,AB=AC,D是BC的中点,B=35,则BAD=( )A110B70C55D358、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( )A锐角三角形B直角三角形C钝角三角形D等腰三角形9、如图,在ABC中,是的垂直平分线,ABC的周长为,的周长为,则的长为( )ABCD10、如图,直线ab,直线ABAC,若152,则2的度数是()A38
4、B42C48D52第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小华的作业中有一道数学题:“如图,AC,BD在AB的同侧,BD4,AB4,AC=1,CED=120,点E是AB的中点,求CD的最大值”哥哥看见了,提示他将ACE和BDE分别沿CE,连接AB最后小华求解正确,得到CD的最大值是 _2、如图,在RtABC中,B90,A60,AB,E为AC的中点,F为AB上一点,将AEF沿EF折叠得到DEF,DE交BC于点G,若BFD30,则CG_3、如图,上午9时,一艘船从小岛A处出发,以12海里/时的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、
5、B在南偏东34、68方向,则小岛B处到灯塔C的距离是_海里4、如图,在RtABC中,C90,ACBC,AD平分CAB,如果CD1,那么BD_5、如图,ABC是等边三角形,点E在AC的延长线上,点D在线段AB上,连接ED交线段BC于点F,过点F作于点N,若,则AN的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在长方形ABCD中,AB=4,BC=6延长BC到点E,使CE=3,连接DE动点P从点B出发,沿着以每秒1个单位的速度向终点E运动,点P运动的时间为秒(1)DE的长为 ;(2)连接AP,求当为何值时,ABPDCE;(3)连接DP,求当为何值时,PDE是直角三角形;(4)直接写
6、出当为何值时,PDE是等腰三角形2、教材呈现:如图是华师版八年级上册数学教材第94页的部分内容请根据教材中的分析(1)结合图,写出“线段的垂直平分线质定理”完整的证明过程(2)定理应用:如图,在ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M连接MB,若AB=8cm,MBC的周长是14cm求BC的长;点P是直线MN上一动点,在运动的过程中,由P,B,C构成的PBC的周长是否存在最小值?若存在,标出点P的位置,并求PBC的周长最小值;若不存在,说明理由3、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将BOC沿BC翻折至BEC,使得点E、O重合,点M是y轴正半轴
7、上的一点且位于点B上方,以点B为端点作一条射线BA,使MBA=BCO,点F是射线BA上的一点(1)请直接写出C、D两点的坐标:点C ,点D ;(2)当BF=BC时,连接FE求点F的坐标;求此时BEF的面积4、如图,已知线段a和EAF,点B在射线AE上在EAF中画出ABC,使点C在射线AF上,且BCa(1)依题意将图补充完整;(2)如果A45,AB4,BC5,求ABC的面积5、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,BAECAD,ABAE,ADAC(1)求证:DECBAE;(2)如图2,当BAECAD30,ADAB时,延长DE、AB交于点G,请直接写出图中除ABE、AD
8、C以外的等腰三角形-参考答案-一、单选题1、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可如果有这种关系,这个就是直角三角形【详解】解:、,该三角形是直角三角形,故此选项不符合题意;、,该三角形是直角三角形,故此选项不符合题意;、,该三角形不是直角三角形,故此选项符合题意;、,该三角形是直角三角形,故此选项不符合题意;故选:C【点睛】本题考查了勾股定理的逆定理,解题的关键是在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断2、B【分析】根据等腰三角形的判定定
9、理,结合图形即可得到结论【详解】解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:C90,A30,是等边三角形,点重合,符合条件的点P有2个;故选B【点睛】本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键3、D【分析】由题意知,DE是线段AC的垂直平分线,据此得AD=CD,AE=EC,再由AB+BD+AD=15知AB+BD+CD=15,即AB+BC=15,结合AE=4可得答案【详解】解:由题意知,DE是线段AC的垂直平分线,AD=CD,AE=EC,AB+BD+AD=15,AB+BD+CD=15,
10、即AB+BC=15,AE=4,即AC=2AE=8,ABC的周长为AB+BC+AC=15+8=23,故选:D【点睛】本题主要考查作图基本作图,线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键4、B【分析】根据等腰三角形三线合一的性质可得,再根据角平分线,求出,然后根据平行线的性质求出,从而得到,最后根据直角三角形角所对的直角边等于斜边的一半即可解答【详解】解:,AD是的中线,AE是的角平分线, 在中,故选B【点睛】本题考查等腰三角形的判定和性质,角平分线的性质,平行线的性质,直角三角形30角所对的直角边等于斜边的一半的性质,利用数形结合的思想是解题关键5、A
11、【分析】先求出EFD=60,ABC=45,由BCAD,得到EFD=FBC=60,则ABF=FBC-ABC=15【详解】解:DBAC90,E30,C45,EFD=60,ABC=45,BCAD,EFD=FBC=60,ABF=FBC-ABC=15,故选A【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键6、D【分析】作EFAC交CA的延长线于F,EGAB于G,EHBC交CB的延长线于H,根据角平分线的性质和判定得到AE平分FAG,求出EAB的度数,根据角平分线的定义求出ABE的度数,根据三角形内角和定理计算得到的度数,再计算出的度数即可【详解】解:作EFA
12、C交CA的延长线于F,EGAB于G,EHBC交CB的延长线于H,CE平分ACB,BE平分ABD,EF=EH,EG=EH,EF=EG又EFAC,EGAB,AE平分FAG,BAC=30,BAF=150,EAB=75,ACB=90,BAC=30,ABC=60,ABH=120,又BE平分ABD,ABE=60,AEB=180-EAB-ABE=45,ACB=90,BAC=30,ABD=120,CE是ACB的平分线,BE是ABC的外角平分线,EBD=60,BCE=45,CEB=60-45=15 故选:D【点睛】题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键,注意三角形内角和定
13、理和角平分线的定义的正确运用7、C【分析】根据等腰三角形三线合一的性质可得ADBC,然后利用直角三角形两锐角互余的性质解答【详解】解:ABAC,D是BC的中点,ADBC,B35,BAD903555故选:C【点睛】本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键8、B【分析】根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案【详解】如图,在ABC中,CD是边AB上的中线AD=CD=BDA=DCA,B=DCBA+ACB+B=180 A+DCA+DCB+B=180即2A+2B=180A+B=90ACB=90ABC是直角三角形故选:B
14、【点睛】本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键9、B【分析】由题意易得BD=AD,然后根据三角形周长可得,进而问题可求解【详解】解:是的垂直平分线,BD=AD,的周长为,的周长为,;故选B【点睛】本题主要考查线段垂直平分线的性质定理,熟练掌握线段垂直平分线的性质定理是解题的关键10、A【分析】利用直角三角形的性质先求出B,再利用平行线的性质求出2【详解】解:ABAC,152,B901905238ab,2B38故选:A【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键二、填空题1、7【分析】由翻折的
15、性质可证EBA是等边三角形,则ABAE2,再根据CDAC+AB+BD,即可求出CD的最大值【详解】解:AB=4,点E为AB的中点,AE=BE=2,CED=120,AEC+DEB=60,将ACE和BDE分别沿CE,DE翻折得到ACE和BDE,AC=AC=1,AE=AE=2,AEC=CEA,DB=DB=4,BE=BE=2,DEB=DEB,AEB=60,AE=BE=2,EBA是等边三角形,AB=AE=2,当点C,点A,点B,点D四点共线时,CD有最大值=AC+AB+BD=7,故答案为:7【点睛】本题主要考查了翻折的性质,等边三角形的判定与性质,两点之间,线段最短等性质,证明EBA是等边三角形是解题的
16、关键2、2【分析】由直角三角形的性质求出,由折叠的性质得出,可求出,由勾股定理可求出的长【详解】解:,为的中点,将沿折叠得到,设,则,解得,故答案为:2【点睛】本题考查了折叠的性质,直角三角形的性质,勾股定理,三角形的内角和定理等知识,熟练掌握折叠的性质是解题的关键3、20【分析】根据所给的角的度数,容易证得是等腰三角形,而的长易求,所以根据等腰三角形的性质,的值也可以求出【详解】解:据题意得,(海里)故答案是:20【点睛】本题考查了等腰三角形的性质及方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法4、【分析】过点D作DE
17、AB于E,根据角平分线上的点到角的两边的距离相等可得DECD,再求出BDE是等腰直角三角形,然后根据等腰直角三角形斜边等于直角边的倍解答【详解】解:如图,过点D作DEAB于E,AD平分CAB,C90,DECD1,ACBC,C90,B45,BDE是等腰直角三角形,BDDE故答案为:【点睛】本题主要考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的直角边与斜边的关系5、22【分析】作DGAC交BC于G,证明DFGEFC,设,则,根据求出的值和等边三角形的边长,进而可求AN的长【详解】解:作DGAC交BC于G,是等边三角形,DGB=ACB=60,DGF=ECF,DFG=EFC,DFGE
18、FC,DGB=ACB=60,是等边三角形,设,则,则,AN的长为27-5=22,故答案为:22【点睛】本题考查了等边三角形的性质与判定,全等三角形的判定与性质,直角三角形的性质,解题关键是恰当作辅助线构建全等三角形,利用全等得出线段之间的关系求解三、解答题1、(1)5;(2)秒时,ABPDCE;(3)当秒或秒时,PDE是直角三角形;(4)当秒或秒或秒时,PDE为等腰三角形【分析】(1)根据长方形的性质及勾股定理直接求解即可;(2)根据全等三角形的性质可得:,即可求出时间t;(3)分两种情况讨论:当时,在两个直角三角形中运用两次勾股定理,然后建立等量关系求解即可;当时,此时点P与点C重合,得出,
19、即可计算t的值;(4)分三种情况讨论:当时,当时,当时,分别结合图形,利用各边之间的关系及勾股定理求解即可得【详解】解:(1)四边形ABCD为长方形,在RtDCE中,故答案为:5;(2)如图所示:当点P到如图所示位置时,ABPDCE,ABPDCE,仅有如图所示一种情况,此时,秒时,ABPDCE;(3)当时,如图所示:在RtPDE中,在RtPCD中,解得:;当时,此时点P与点C重合,;综上可得:当秒或秒时,PDE是直角三角形;(4)若PDE为等腰三角形,分三种情况讨论:当时,如图所示:,;当时,如图所示:,;当时,如图所示:,在RtPDC中,即,解得:,;综上可得:当秒或秒或秒时,PDE为等腰三
20、角形【点睛】题目主要考查勾股定理解三角形,等腰三角形的性质,全等三角形的性质等,理解题意,分类讨论作出相应图形是解题关键2、(1)见解析;(2)6cm;存在,图见解析,14cm【分析】(1)根据,可得,从而证得ACPBCP,即可求证;(2)根据线段垂直平分线的性质定理,可得MB=MA,再由MBC的周长是14cm,可得AC+BC=14cm,即可求解;根据线段垂直平分线的性质定理,可得PB=PA,从而得到PB+CP=PA+PCAC,进而得到当点P与点M重合时,的值最小,即可求解【详解】(1)证明:,在ACP与BCP中,ACPBCP,PA=PB;(2)MN垂直平分ABMB=MA,又MBC的周长是14
21、cm,AC+BC=14cm, AC=AB=8cm,BC=6cm如图,当点P与点M重合时,的值最小,MN垂直平分ABPB=PA,PB+CP=PA+PCAC,当点P与点M重合时,的值最小,为AC的长PBC的周长最小值是8+6=14cm【点睛】本题主要考查了线段垂直平分线的性质定理,全等三角形的判定和性质,熟练掌握线段垂直平分线上的点到线段两端距离相等是解题的关键3、(1)(-1 ,0),(2 ,0);(2)F(-3 ,4);【分析】(1)由B(0 ,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;(2)过点F作FP轴于点P,利用AAS证明FPBBOC即可求解;过点
22、F作FQBE于点Q,证明FB是PBE的角平分线,利用角平分线的性质求解即可【详解】解:(1)B(0 ,3),OB=3,OB=CD,且OD=2OC,OC=1,OD=2,C(-1 ,0),D(2 ,0);故答案为:(-1 ,0),(2 ,0);(2)过点F作FP轴于点P,PBF=BCO,BF=BC,又FPB=BOC=90,FPBBOC(AAS),FP=BO=3,PB= OC=1,PO=4,F(-3 ,4);过点F作FQBE于点Q,CBO+BCO=90,PBF=BCO,CBO+PBF=90,则CBF=90,由折叠的性质得:EBC=OBC,EB=BO=3,EBC +EBF=90,EBF=PBF,即FB
23、是PBE的角平分线,又FQBE,FP轴,FQ= FP=3,BEF的面积为BEFQ=【点睛】本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件4、(1)图见解析;(2)2或14【分析】(1)以点为圆心,长为半径画弧,交于点即可得;(2)过点作于点,先根据等腰直角三角形的判定与性质可得,再利用勾股定理可得,从而可得,然后利用三角形的面积公式即可得【详解】解:(1)如图,和即为所求;(2)如图,过点作于点,是等腰直角三角形,解得(负值已舍),的面积为,的面积为,综上,的面积为2或14【点睛】本题主要考查学生一个作图能力和分类讨论思想,
24、涉及的知识点有等腰直角三角形和勾股定理,解题的关键是熟练掌握等腰直角三角形的性质和勾股定理的运用,以及分类讨论的数学思想5、(1)见解析;(2)AEF、ADG、DCF、ECD【分析】(1)根据已知条件得到BAECAD,根据全等三角形的性质得到AEDABC,根据等腰三角形的性质得到ABCAEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论【详解】证明:(1)如图1,BAECAD, BAECAECADCAE,即BACEAD,在AED与ABC中,AEDABC,AEDABC,BAEABCAEB180,CEDAEDAEB180,ABAE,ABCAEB,BAE2AEB180,CED2AEB180,DECBAE;(2)解:如图2, BAECAD30,ABCAEBACDADC75,由(1)得:AEDABC75,DECBAE30,ADAB,BAD90,CAE30,AFE180307575,AEFAFE, AEF是等腰三角形, BEGDEC30,ABC75,G45,在RtAGD中,ADG45,ADG是等腰直角三角形, CDF754530,DCFDFC75,DCF是等腰直角三角形;CEDEDC30,ECD是等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键