《2022年强化训练北师大版七年级数学下册第六章概率初步必考点解析试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版七年级数学下册第六章概率初步必考点解析试题(含解析).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第六章概率初步必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、袋中有白球3个,红球若干个,他们只有颜色上的区别从袋中随机取出一个球,如果取到白球的可能性更大,那么袋中红球的
2、个数可能是( )A2个B3个C4个D4个或4个以上2、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个,搅拌均匀后,随机抽取一个小球,是红球的概率为()ABCD3、一枚质地均匀的正六面体骰子六个面分别刻有1到6的点数,掷这枚骰子,前5次朝上的点数恰好是15,则第6次朝上的点数是6的可能性( )A等于朝上点数为5的可能性B大于朝上点数为5的可能性C小于朝上点数为5的可能性D无法确定4、抛掷一枚质地均匀的硬币2021次,正面朝上最有可能接近的次数为( )A800B1000C1200D14005、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面
3、的数字是偶数的概率为( )ABCD6、下列事件中,是必然事件的是()A如果a2b2,那么abB车辆随机到达一个路口,遇到红灯C2021年有366天D13个人中至少有两个人生肖相同7、下列说法中错误的是( )A抛掷一枚质地均匀的硬币,落地后“正面朝上”和“反面朝上”是等可能的B甲、乙两地之间质地均匀的电缆有一处断点,断点出现在电缆的各个位置是等可能的C抛掷一枚质地均匀的骰子,“朝上一面的点数是奇数”和“朝上一面的点数是偶数”是等可能的D一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,“摸到白球”和“摸到红球”是等可能的8、从一副完整的扑克牌中任意抽取1张
4、,下列事件与抽到“A”的概率相同的是()A抽到“大王”B抽到“红桃”C抽到“小王”D抽到“K”9、一个袋中装有红、黑、黄三种颜色小球共15个,这些球除颜色外均相同,其中红色球有4个,若从袋中任意取出一个球,取出黄色球的概率为,则黑色球的个数为()A3B4C5D610、下列说法正确的是( )A13名同学的生日在不同的月份是必然事件B购买一张福利彩票,恰好中奖是随机事件C天气预报说驻马店明天的降水概率为99%,意味着驻马店明天一定会下雨D抛一枚质地均匀的硬币正面朝上的概率为,则抛 100次硬币,一定会有50 次正面朝上第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有两把不
5、同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是_2、一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_3、(1)“同时投掷两枚骰子,朝上的数字相乘为7”的概率是_(2)在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有_个4、 “任意买一张电影票,座位号是2的倍数”,此事件是_事件(填“确定”或“不确定”)5、在一只不透明
6、的口袋中放入只有颜色不同的白球7个,黑球5个,黄球个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球总数_三、解答题(5小题,每小题10分,共计50分)1、小明家里的阳台地面,水平铺设了仅黑白颜色不同的18块方砖(如图),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上(1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖颜色?怎样改变?2、在一个口袋中装有4个红球和8个白球,它们除颜色外完全相同(1)求从口袋中随机摸出一个球是红球的概率;(2)现从口袋中取走若干个白球,并放入相同数量的红球,充分摇匀后,要使
7、从口袋中随机摸出一个球是红球的概率是,问取走了多少个白球?3、为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动,赛后随机抽取了部分学生的成绩,按得分划分为A,B,C,DA等级(0x100),B等级(80x90),C等级(70x80),D等级(x70)四个等级,并绘制了如下不完整的统计表和统计图根据图表信息,回答下列问题:(1)表中a ;扇形统计图中,C等级所占的百分比是 ;D等级对应的扇形圆心角为 度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为A等级的学生共有 人(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用
8、列表或树状图法求甲、乙两人至少有1人被选中的概率4、一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,它获得食物的概率是多少?5、为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社做了如下的调查问卷单选在随机调查了本市全部万名中的部分司机后,整理相关数据并制作了如下两个不完整的统计图“开车不喝酒,喝酒不开车”调查问卷表克服酒驾你认为哪种方式最好A.司机酒驾,乘客有责,让乘客帮助监督B在车上张贴“请勿喝酒”的提醒标志C.签订“永不酒驾”保证书D.希望交警加大检查力度E查出酒驾,追究就餐饭店的连带责任 根据以上信息,解答下列问题:(1)请补全条形统计图,并直
9、接写出扇形统计图中 _ ;(2)该市支持选项B的司机大约有多少人?(3)如果要从该市支持选项B的司机中随机抽取名,给他们发放“请勿酒驾”的提醒标志,那么支持选项B的司机小李被抽中的概率是多少?-参考答案-一、单选题1、A【分析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解【详解】解:袋中有白球3个,取到白球的可能性较大,袋中的白球数量大于红球数量,即袋中红球的个数可能是2个或2个以下故选:A【点睛】本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等2、A【分析】用红球的个数除以所有球的个
10、数即可求得抽到红球的概率【详解】解:共有5个球,其中红球有2个,P(摸到红球),故选A【点睛】此题主要考查概率的意义及求法用到的知识点为:概率所求情况数与总情况数之比掌握概率的意义是解题关键3、A【分析】根据正六面体骰子六个面出现的可能性相同判断即可;【详解】因为一枚均匀的骰子上有“1”至“6”,所以第6次出现的点数为1至6的机会相同故选A【点睛】本题主要考查了可能性大小,准确分析判断是解题的关键4、B【分析】由抛掷一枚硬币正面向上的可能性约为求解可得【详解】解:抛掷一枚质地均匀的硬币次,正面朝上的次数最有可能为次,故选B【点睛】本题主要考查了事件的可能性,解题的关键在于能够理解抛掷一枚硬币正
11、面向上的可能性约为5、B【分析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算【详解】解:依题意得P(朝上一面的数字是偶数)故选B【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解6、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2b2,那么,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故
12、选:D【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.7、D【分析】根据随机事件发生的可能性结合概率公式分别对每一项进行分析,即可得出答案【详解】解:A、抛掷一枚质地均匀的硬币,落地后“正面朝上”和“反面朝上”的概率是相等的,是等可能的,正确,不符合题意;B、甲、乙两地之间质地均匀的电缆有一处断点,断点出现在电缆的各个位置上的概率相同,是等可能的,正确,不符合题意;C、抛掷一枚质地均匀的骰子,“朝上一面的点数是奇数”和“朝上一面的点数是偶数”的概率是相等的,是等可能的,正确,不符合题意;D、一只不透明的袋子中装有2个白球和1个红球,这些球除
13、颜色外都相同,搅匀后从中任意摸出1个球,“摸到白球”的概率大于“摸到红球”的概率,故本选项错误,符合题意;故选:D【点睛】本题考查的是随机事件发生的可能性的大小,概率的含义,掌握“等可能事件的理解”是解题的关键.8、D【分析】抽到“A”的概率为,只要计算四个选项中的概率,即可得到答案【详解】抽到“A”的概率为,而抽到“大王”与抽到“小王”的概率均为,抽到“红桃”的概率为,抽到“K”的概率为,即抽到“K”的概率与抽到“A”的概率相等故选:D【点睛】本题考查了简单事件的概率,根据概率计算公式,要知道所有可能结果数,及事件发生的结果数,即可求得事件的概率9、C【分析】根据取到黄球的概率求出黄球个数,
14、总数减去红黄球个数,即可得到黑球个数【详解】根据题意可求得黄球个数为:15=6个,所以黑球个数为:15-6-4=5个,故选:C【点睛】本题考查的是概率计算相关知识,熟记概率公式是解答此题的关键10、B【分析】根据随机事件,判断事件发生的可能性的大小,以及概率的概念逐项分析即可【详解】A. 名同学的生日不一定在不同月份,故该选项不正确,不符合题意;B. 购买一张体育彩票,恰好中奖是随机事件,故该选项正确,符合题意;C. 天气预报说驻马店明天的降水概率为,只是降水概率大,不一定会下雨,故该选项不正确,不符合题意;D. 抛一枚质地均匀的硬币,正面朝上的概率为,则掷次硬币,不一定会有次正面朝上,只是随
15、着试验次数的增大,概率接近,故该选项不正确,不符合题意故选B【点睛】本题考查了概率的概念,随机事件的定义,掌握概率的相关知识是解题的关键二、填空题1、【分析】随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数【详解】解:由题意得,共有种可能情况,其中能打开锁的情况有2种,故一次打开锁的概率为:,故答案为:【点睛】本题考查概率,熟练掌握概率公式是解题关键2、【分析】由题可知,第10次摸出的球的颜色与前9次的结果是无关的,求出球的总数和黄球的个数,利用概率的公式进行计算即可【详解】共有个小球,3个黄球,第10次摸出黄球的概率是故答案为【点睛】本题是一道关于概率的题目,解答本题
16、的关键是熟练掌握概率的计算公式3、0 4 【分析】(1)朝上的数字相乘为7是不可能发生的,据此即可求解;(2)根据摸到白球的概率公式,列出方程求解即可【详解】解:(1)朝上的数字相乘为7是不可能发生的故“同时投掷两枚骰子,朝上的数字相乘为7”的概率是0故答案为:0;(2)不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,设其中白色小球x个,根据概率公式知:P(白色小球)=40%,解得:x=4故答案为:4【点睛】本题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=4、不确定【分析】根据确定事件和
17、随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】根据题意,座位号可能是奇数可能是偶数,所以此事件是随机事件,即不确定事件故答案为:不确定【点睛】本题考查了确定事件和随机事件,理解定义是解题的关键5、6【分析】利用概率公式,将黄球个数除以所有球总个数即可得出随机从中摸取一个恰好是黄球的概率【详解】解:由题可知:,解得:,经检验,符合题意;故答案为:6【点睛】本题考查了随机事件的概率,解题的关键是牢记概率公式,正确列出方程并求解三、解答题1、(1)小皮球停留在黑色方砖上的概率是,小皮球停留在白色方砖上的概率是;(
18、2)小皮球停留在黑色方砖上的概率大,要使这两个概率相等,应改变第二行第4列中的方砖颜色,黑色方砖改为白色方砖【分析】首先审清题意,明确所求概率为哪两部分的比值,再分别计算其面积,最后相比计算出概率【详解】解:(1)由图可知:共18块方砖,其中白色8块,黑色10块,故小皮球停留在黑色方砖上的概率是;小皮球停留在白色方砖上的概率是(2)因为,所以小皮球停留在黑色方砖上的概率大于停留在白色方砖上的概率 要使这两个概率相等,应改变第二行第4列中的方砖颜色,黑色方砖改为白色方砖【点睛】此题考查了几何概率,用到的知识点为:概率=所求情况数与总情况数之比,解题的关键是掌握概率公式2、(1)从口袋中随机摸出一
19、个球是红球的概率是;(2)取走了6个白球【分析】(1)用红球的个数除以总球的个数即可;(2)设取走了x个白球,根据概率公式列出方程,求出x的值即可得出答案【详解】解:(1)口袋中装有4红球和8个白球,共有12个球,从口袋中随机摸出一个球是红球只有4种情况从口袋中随机摸出一个球是红球的概率是;(2)设取走了x个白球,根据题意得:,解得:x=6,答:取走了6个白球【点睛】本题考查了概率的知识,解方程,掌握概率的知识,概率=所求情况数与总情况数之比,解方程是解题关键3、(1)20,30%,42,450;(2)【分析】(1)由A等级的人数和所对应的圆心角的度数求出抽取的学生人数,即可解决问题;(2)画
20、树状图,共有12种等可能的结果,甲、乙两人至少有1人被选中的结果有10种,再由概率公式求解即可【详解】解:(1)抽取的学生人数为:1560(人),a601518720,C等级所占的百分比是1860100%30%,D等级对应的扇形圆心角为:36042,估计成绩为A等级的学生共有:18001560450(人),故答案为:20,30%,42,450;(2)95分以上的学生有4人,其中甲、乙两人来自同一班级,其他两人记为丙、丁,画树状图如图:共有12种等可能的结果,甲、乙两人至少有1人被选中的结果有10种,甲、乙两人至少有1人被选中的概率为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图
21、法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率所求情况数与总情况数之比4、【分析】根据题意分析,根据获得食物的路径数除以路径总数,即可求解 【详解】解:由图可知寻找食物的路径共有2226(条),而获得食物的路径共有2条,所以P(获得食物)【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键5、(1)见解析,12;(2)13500人;(3)【分析】(1)由选择方式B的有81人,占总数的27%,即可求得总人数,利用总人数减去其它各组的人数即可求得选择方式D的人数,作出直方图,然后根据百分比的意义求得m的值;(2)利用总人数50000乘以对应的百分比即可求得;(3)利用概率公式即可求解【详解】解:(1)调查的总人数是:人,则选择方式的人数人,补全条形统计图如下:故答案为:;(2)该市支持选项B的司机共有人,答:该市支持选项B的司机大约有人(3)该市支持选项B的司机共有人,则支持该选项的司机小李被抽中的概率答:支持选项B的司机小李被抽中的概率是【点睛】此题考查了条形统计图,扇形统计图,用样本估计总体以及概率等知识,解题的关键是正确分析条形统计图,扇形统计图中的数据