《必考点解析北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组综合训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《必考点解析北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组综合训练练习题(无超纲).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章一元一次不等式和一元一次不等式组综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x的不等式组有且只有3个奇数解,且关于y的方程3y+6a=22-y的解为非负整数,则符合条件的所有整数
2、a的积为( )A-3B3C-4D42、如果ab,c0,那么下列不等式成立的是()Aa+cbBacbcCac+1bc+1Da(c2)b(c2)3、把不等式的解集在数轴上表示正确的是( )ABCD4、一次函数ykx+b的图象如图所示,则下列说法错误的是()Ay随x的增大而减小Bk0,b0C当x4时,y0D图象向下平移2个单位得yx的图象5、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打( )折A9B8C7D66、已知关于x的不等式无解,则a的取值范围为()Aa2Ca2Da27、下列不等式是一元一次不等式的是( )ABCD8、由xy
3、得axay的条件应是( )Aa0Ba0Ca0Db09、一元一次不等式组的解是()Ax2Bx4C4x2D4x210、已知ab,下列变形一定正确的是()A3a4bCac2bc2D3+2a3+2b第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式的解集是_2、若方程组的解满足2x3y1,则k的的取值范围为 _3、在平面直角坐标系xOy中,一次函数ykx和yx+3的图象如图所示,则关于x的一元一次不等式kxx+3的解集是_4、若xy,且(6a)x(6a)y,则a的取值范围是 _5、 “x与2的差不小于x的5倍”用不等式表示为_三、解答题(5小题,每小题10分,共计50分)1
4、、解不等式组,并写出所有整数解(不画数轴)2、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;(1)求甲、乙两种商品每件的进价分别为多少元;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?3、已知关于的一次函数,其中为常数且(1)若的值随的值增大而增大,则的取值
5、范围是_;(2)若该一次函数的图象经过点,当时,求的取值范围4、解方程组或不等式组:(1);(2)5、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍设购进A型电脑x台,这100台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?-参考答案-一、单选题1、A【分析】先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,
6、从而确定的取值,即可求解【详解】解:由关于x的不等式组解得关于x的不等式组有且只有3个奇数解,解得关于y的方程3y+6a=22-y,解得关于y的方程3y+6a=22-y的解为非负整数,且为整数解得且为整数又,且为整数符合条件的有、符合条件的所有整数a的积为故选:A【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键2、A【分析】根据不等式的性质,逐项判断即可求解【详解】解:A、由ab,c0得到:a+cb+0,即a+cb,故本选项符合题意B、当a1,b2,c3时,不等式acbc不成立,故本选项不符合题意C、由ab,c0得到
7、:ac+1bc+1,故本选项不符合题意D、由于c22,所以a(c2)b(c2),故本选项不符合题意故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变3、D【分析】解一元一次不等式求出不等式的解集,由此即可得出答案【详解】解:不等式的解集为,在数轴上的表示如下:故选:D【点睛】本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键4、B【分析】由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图
8、象可得:当x4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数ykx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;一次函数ykx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;由图象可得:当x4时,函数图象在轴的下方,所以y0,故C不符合题意;由函数图象经过 ,解得: 所以一次函数的解析式为: 把向下平移2个单位长度得:,故D不符合题意;故选B【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.5、C【分
9、析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可【详解】设打x折,根据题意得:110070070010%,解得:x7,至多可以打7折故选:C【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解6、B【分析】先整理不等式组,根据无解的条件列出不等式,求出a的取值范围即可【详解】解:整理不等式组得:xax6-a2,不等式组无解,2故选:B【点睛】本题主要考查了不等式组无解的条件,根据整理出的不等式组和无解的条件列出关于a的不等式是解答本题的关键7、B【分析】根据含有
10、一个未知数,未知数的次数是1的不等式,叫做一元一次不等式进行分析即可【详解】解:A、未知数的次数含有2次,不是一元一次不等式,故此选项不合题意;B、是一元一次不等式,故此选项符合题意;C、是分式,故该不等式不是一元一次不等式,故此选项不合题意;D、含有两个未知数,不是一元一次不等式,故此选项不合题意;故选:B【点睛】此题主要考查了一元一次不等式定义,关键是掌握一元一次不等式的定义8、B【分析】由不等式的两边都乘以 而不等号的方向发生了改变,从而可得.【详解】解: 故选B【点睛】本题考查的是不等式的性质,掌握“不等式的两边都乘以同一个负数,不等号的方向改变”是解本题的关键.9、C【分析】分别求出
11、各不等式的解集,再求出其公共解集即可【详解】解:,解不等式得,解得:,解不等式得,解得:,故不等式组的解集为:故选:C【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键10、D【分析】根据不等式的基本性质逐项排查即可【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C当c0时,不等式不成立,故C选项不正确,不符合题意;D不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意故选:D【点睛
12、】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变二、填空题1、x-5【分析】根据不等式的性质求解即可【详解】解:,3x-15,解得x-5,故答案为:x-5【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键2、#【分析】将即可得,结合题意即可求得的范围【详解】得, 2x3y1解得故答案为:【点睛】本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键3
13、、x1【分析】利用函数与不等式的关系,找到正比例函数高于一次函数图像的那部分对应的自变量取值范围,即可求出解集【详解】解:由图可知:不等式kxx+3,正比例函数图像在一次函数上方的部分,对应的自变量取值为x1故此不等式的解集为x1故答案为:x1【点睛】本题主要是考查了一次函数与不等式,熟练地应用函数图像求解不等式的解集,培养数形结合的能力,是解决该类问题的要求4、a6【分析】根据不等式的基本性质,发现不等式的两边都乘(6a)后,不等号的方向改变了,说明(6a)是负数,从而得出答案【详解】解:根据题意得:6a0,a6,故答案为:a6【点睛】本题考查了不等式的基本性质,掌握不等式的两边同时加上(或
14、减去)同一个数或代数式,不等号的方向不变;不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键5、【分析】应理解:不小于,即大于或等于【详解】根据题意,得x-25x故答案是:x-25x【点睛】本题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式本题不小于即“”三、解答题1、不等式组的解集为:;整数解为:-1,0,1,2【分析】分别把不等式组中的两个不等式解出来,然后求得不等式组的解集,根据解集找到整数解即可【详解】解:,
15、解不等式得:,解不等式得:,不等式组的解集为:,不等式组的整数解为:-1,0,1,2【点睛】本题主要是考查了不等式组的求解,熟练掌握求解不等式组的方法,注意最后的解集要取不等式组中的每个不等式解集的公共部分,不要弄错2、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件【分析】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;(2)设该超市购进甲种商品m件,根据不等关系:甲商品的利润+乙商品的利润6500,列出不等式,不等式即可,再
16、取不等式解集中最大的整数值即可【详解】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据题意的 解得故甲种商品每件进价为100,乙种商品每件进价300元(2)设该超市购进甲种商品m件,根据题意得:(150100)m(400300)(80m)6500解得m30m为整数m的最大整数值为30即该超市最多购进甲种商品30件【点睛】本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题3、(1)(2)【分析】(1)根据一次函数的性质:当时,随的增大而增大,当时,随的增大而减小,即可得出答案;(2)把代入中求出的值,确定一次函数解析式
17、,由不等式的性质即可得解(1)的值随的值增大而增大,解得:,故答案为:;(2)把代入中得:,解得:,当时,的取值范围为【点睛】本题考查一次函数的性质与不等式的解,掌握一次函数的性质是解题的关键4、(1);(2)【分析】(1)利用代入消元法求解即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可【详解】解:(1)由得:,将代入得,解得将代入得: 方程组的解为:;(2)解不等式组由得:,解得,由得:,解得,不等式组的解集为:【点睛】本题主要考查了解一元一次不等式和解二元一次方程组,解题的关键在于能够熟练掌握相关计算方法5、(1)每台A型电脑销售利润为160元,每台B型电脑的销售利润为24
18、0元;(2)y80x+24000;商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元【分析】(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据“销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元”列出方程组,然后求解即可;(2)设购进A型电脑x台,这100台电脑的销售总利润为y元根据总利润等于两种电脑的利润之和列式整理即可得解;根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可【详解】解:(1)设每台A型电脑销售利润为x元,每台B型电脑的
19、销售利润为y元,根据题意得,解得每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)设购进A型电脑x台,这100台电脑的销售总利润为y元,据题意得,y160x+240(100x),即y80x+24000,100x2x,x33,y80x+24000,y随x的增大而减小,x为正整数,当x34时,y取最大值,则100x66,此时y-8034+2400021280(元),即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握