《2022年最新强化训练沪科版九年级数学下册第26章概率初步专项测评练习题(精选含解析).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练沪科版九年级数学下册第26章概率初步专项测评练习题(精选含解析).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中,正确的是( )A“射击运动员射击一次,命中靶心”是必然事件B事件发生的可能性越大,它的概率越接近1C
2、某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得2、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )ABCD3、下列事件中,属于必然事件的是()A射击运动员射击一次,命中10环B打开电视,正在播广告C投掷一枚普通的骰子,掷得的点数小于10D在一个只装有红球的袋中摸出白球4、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的
3、个数约为( )A12B15C18D235、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是()A15B12C9D46、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是()A1B1CD17、下列说法正确的是( )A“买中奖率为的奖券10张,中奖”是必然事件B“汽车累积行驶,出现一次故障”是随机事件C襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D若两组数据的平均数相同,则方差大的更稳定8、把6张大小、厚度、颜色相
4、同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )ABCD9、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B可以用试验次数累计最多时的频率作为概率的估计值C由此估
5、计这种幼苗在此条件下成活的概率约为0.9D如果在此条件下再移植这种幼苗20000株,则必定成活18000株10、下列事件中,属于不可能事件的是( )A射击运动员射击一次,命中靶心B从一个只装有白球和红球的袋中摸球,摸出黄球C班里的两名同学,他们的生日是同一天D经过红绿灯路口,遇到绿灯第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无差别,从中随机摸出一个小球,则摸到的是红球的概率为_2、某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的
6、概率是 _3、某农科所为了了解新玉米种子的出芽情况,在推广前做了五次出芽实验,在相同的培育环境中分别实验,实验具体情况记录如下:种子数量10030050010003000出芽数量992824809802910随着实验种子数量的增加,可以估计A种子出芽的概率是 _4、一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_5、只有1和它本身两个因数且大于1的自然数叫做质数,我国数学家陈景润在有关质数的“哥德巴赫猜想”的研究中取得了世界领先的成果从3
7、,5,7,11,13,23这6个质数中随机抽取一个,则抽到个位数是3的可能性是_三、解答题(5小题,每小题10分,共计50分)1、在“双减”政策下,某学校自主开设了A书法、B篮球、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等若小明和小刚两位同学各计划选修一门课程,请用列表或树状图求他们两人恰好同时选修球类的概率2、在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀(1)从中随机摸出一个小球,上面的数字不小于2的概率为 (2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数
8、的概率3、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率4、随着科技的发展,沟通方式越来越丰富一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;(2)
9、求甲、乙两位同学恰好选择同一种沟通方式的概率5、九年级十班的甲、乙两位同学练习百米赛跑;操场上从内道到外道,标有1,2,3,4四个跑道他们抽签占跑道(1)若甲抽到2道,则乙抽到3道的概率是_;(2)请列表或画树状图求甲、乙在相邻跑道的概率-参考答案-一、单选题1、B【分析】根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D【详解】解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;事件发生的可能性越大,说明
10、发生的机会越大,它的概率越接近1,故选项B正确;某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确故选择B【点睛】本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键2、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:故选C【点睛】本
11、题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.3、C【分析】根据事件发生的可能性大小判断即可【详解】解:A、射击运动员射击一次,命中10环,是随机事件;B、打开电视,正在播广告,是随机事件;C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;D、在一个只装有红球的袋中摸出白球,是不可能事件;故选:C【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件4、A【分析】由题意可设盒子中红球的个数x,则盒子中球
12、的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可【详解】解:设盒子中红球的个数x,根据题意,得: 解得x=12,所以盒子中红球的个数是12,故选:A【点睛】本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p5、A【分析】由于摸到红球的频率稳定在20%,由此可以确
13、定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n【详解】摸到红球的频率稳定在20%,摸到红球的概率为20%,而a个小球中红球只有3个,摸到红球的频率为解得故选A【点睛】此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.6、A【分析】设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可【详解】解:如图所示,设正方形ABCD的边长为a,四边形ABCD是正方形,C=90, ,石子落在阴影部分的概率是,故选A【点睛】本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影
14、部分的概率即为阴影部分面积与正方形面积的比7、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案【详解】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键8、D【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:线段、等边三
15、角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键9、D【分析】根据频率估计概率逐项判断即可得【详解】解:A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D如果在此
16、条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D【点睛】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键10、B【分析】根据不可能事件的意义,结合具体的问题情境进行判断即可【详解】解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意; C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;故选:B【点睛】本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判
17、断的前提二、填空题1、【分析】将红球的个数除以球的总个数即可得【详解】解:根据题意,摸到的不是红球的概率为,答案为:【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数2、【分析】先列表求解所有的等可能的结果数,再得到所选代表恰好为1名女生和1名男生的结果数,再利用概率公式进行计算即可.【详解】解:列表如下: 所以:所有的可能的结果数有种,刚好是1名女生和1名男生的结果数有8种,所以所选代表恰好为1名女生和1名男生的概率是: 故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解等可能事件的概率,掌握“画树状图或列表的方法”是解本题的关键.
18、3、【分析】根据概率的公式解题:A种子出芽的概率=A种子出芽数量玉米种子总数量【详解】解:故答案为:【点睛】本题考查概率的意义,大量反复试验下频率稳定值即为概率,随机事件发生的概率在0至1之间4、【分析】可根据“黑球数量黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数总共摸球的次数”【详解】解:共摸球4000次,其中800次摸到黑球,从中随机摸出一个球是黑球的概率为,故答案为:【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比5、【分析】先利用列举法求出个位数字是3的所有结果数,然后利用概率公式求解即可【详解】
19、解:从3,5,7,11,13,23这6个质数中随机抽取一个数一共有6种等可能性的结果数,其中抽到个位是3的有3,13,23三种结果数,抽到个位数字是3的概率是,故答案为:【点睛】本题主要考查了概率的计算,熟练掌握列举法进行概率的计算是解决本题的关键三、解答题1、【分析】画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修球类的结果数,然后根据概率公式求解【详解】解:画树状图为:共有16种等可能的结果数,其中他们两人恰好选修球类的结果数为4,所以他们两人恰好选修球类的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m
20、,然后利用概率公式计算事件A或事件B的概率2、(1);(2)【分析】(1)列表确定出所有等可能的情况数,找出小球上写的数字不小于2的情况数,即可求出所求概率;(2)列表确定出所有等可能的情况数,找出两次摸出小球上的数字和恰好是奇数的情况数,即可求出所求概率【详解】解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,其中数字不小于2的情况有:2,3,4,共3种,则P(小球上写的数字不小于2);故答案为:;(2)根据题意列表得:12341(1,2)(1,3)(1,4)2(2,1)(2,3)(2,4)3(3,1)(3,2)(3,4)4(4,1)(4,2)(4,3)
21、所有等可能的数有12种,两次摸出小球上的数字和恰好是奇数的情况有8种,则P(两次摸出小球上的数字和恰好是奇数)故答案为:【点睛】本题考查了概率公式,学会利用列表法与树状图法求随机事件的概率是解本题的关键3、【分析】用A、B、C、D分别表示化学、生物、地理、政治,然后画出树状图求解【详解】解:用A、B、C、D分别表示化学、生物、地理、政治,画树状图如下,由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即
22、可,即4、(1)3种可能,分别是“微信”“QQ”,“电话”(2)【分析】(1)用例举法可得甲,乙两位同学选择沟通方式都有3种可能.(2)画树状图展示所有9种等可能的结果数,再找出恰好选中同一种沟通方式的结果数,然后根据概率公式求解(1)解:甲,乙两位同学选择沟通方式都有3种可能,分别是“微信”“QQ”,“电话”.(2)解:画出树状图,如图所示 所有情况共有9种情况,其中恰好选择同一种沟通方式的共有3种情况, 故两人恰好选中同一种沟通方式的概率为【点睛】本题考查了判断简单随机事件的可能性,利用列表法与树状图法求解等可能事件的概率;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或
23、B的结果数目m,然后利用概率公式求事件A或B的概率5、(1);(2)【分析】(1)因为甲已经抽到了2道,故乙只能在1、3、4三条跑道中抽取,乙抽到3道的概率P=(2)如图所示列表格,因为甲乙不能在同一条跑道,故共有12种可能,其中(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)为甲、乙跑道相邻的情况,故甲、乙在相邻跑道的概率为【详解】(1)甲已经抽到2号跑道乙只能在1、3、4三条跑道中抽取乙抽到3道的概率P=(2)如图所示列表格可知(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)时甲、乙在相邻跑道故甲、乙在相邻跑道的概率为【点睛】本题考查了事件概率的计算以及列表法求概率,当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法列表法的一般步骤:(1)把所有可能发生的试验结果一一列举出来,要求:不重不漏;所有可能结果有规律地填入表格(2)把所求事件发生的可能结果都找出来(3)代入计算公式: