《强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项练习试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项练习试题(含答案解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章一元一次不等式和一元一次不等式组专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一次函数ykxb(k,b为常数,k0)经过点A(3,2),则关于x的不等式中k(x1)b2的解集为( )
2、Ax2Bx2Cx3Dx32、若点在第一象限,则a的取值范围是( )ABCD无解3、适合|2a+7|+|2a1|8的整数a的值的个数有()A2B4C8D164、如图,数轴上表示的解集是()A3x2B3x2Cx3Dx25、不等式的解集在数轴上表示正确的是 ( )ABCD6、已知x1是不等式(x5)(ax3a+2)0的解,且x4不是这个不等式的解,则a的取值范围是( )Aa2Ba1C2a1D2a17、不等式组的解集在数轴上表示正确的是( )ABCD8、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()Ax2Bx2Cx2因不等式组无解,把两个不等式的解集在数轴上表示出来如下:观察图
3、象知,当m2时,满足不等式组无解故答案为:【点睛】本题考查了根据不等式组解的情况确定参数的取值范围,借助数轴数形结合是关键5、2xy0【分析】直接利用“x的2倍”即2x,再减y,结果是非正数,即小于等于零,即可得出不等式【详解】解:由题意可得:2xy0故答案为:2xy0【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键三、解答题1、(1)25台;(2)方案1:A23台,B37台;方案2:A24台;B36台;方案3:A25台,B35台【分析】(1)设该垃圾处理厂购买x台A型号机器人,则购买(60一x)台B型号机器人,根据购进B型号机器人的数量不少于A型号机器人的1.
4、4倍,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)根据总价=单价数量,结合总价不超过510万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,结合x为整数且x25,即可得出各购买方案【详解】解:(1)设该垃圾处理厂购买x台A型号机器人,则购买(60一x)台B型号机器人,依题意得:60-x1.4x解得:x25答:该垃圾处理厂最多购买25台A型号机器人(2)依题意得:6x+10(60-x)510,解得:x又x为整数,且x25x可以取23,24,25,共有3种购买方案,方案1:购买23台A型号机器人,37台B型号机器人;方案2:购买24台A型号机器人,36台B型
5、号机器人;方案3:购买25台A型号机器人,35台B型号机器人【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键2、(1);(2)【分析】(1)先去括号,再移项,合并同类项即可得到答案;(2)先去分母,去括号,再移项,合并同类项,再把未知数的系数化“1”,从而可得答案.【详解】解:(1)4(x1)+33x去括号得: 移项,合并同类项得: (2)去分母得: 移项,合并同类项得:解得:【点睛】本题考查的是一元一次不等式的解法,掌握解一元一次不等式的基本步骤是解本题的关键.3、(1)y=152x;有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;
6、或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;(2)采用A、B、C三种的车辆数分别是:3辆、9辆、3辆;捐款数最多是134400元【分析】(1)等量关系为:车辆数之和=15,由此可得出x与y的关系式;由题意,列出不等式组,求出x的取值范围,即可得到答案;(2)总利润为:装运A种水果的车辆数10800+装运B种水果的车辆数81200+装运C种水果的车辆数61000+运费补贴,然后按x的取值来判定【详解】解:(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,则装C种水果的车辆是(15-x-y)辆则10x+8y+6(15-x-y)=120,即10x+8y+90-6x-6y=
7、120,则y=15-2x;根据题意得:,解得:3x6则有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;(2)w=10800x+81200(15-2x)+6100015-x-(15-2x)+12050=5200x+150000,根据一次函数的性质,当x=3时,w有最大值,是52003+150000=134400(元)应采用A、B、C三种的车辆数分别是:3辆、9辆、3辆【点睛】本题考查了一次函数的应用及不等式的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装在的几种方案是解决本题的关键4、;图见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示出不等式组的解集即可【详解】解: 解不等式得:,解不等式得:,故此不等式的解集为:,数轴上表示解集为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式组的解集,解题的关键在于能够熟练掌握求不等式组的解集的方法5、 (1) ;(2) 【分析】(1)先化简,再求解方程;(2)先化简,再求出不等式的解集【详解】(1) 11x=-33(2) -9x-3【点睛】此题主要考查整式的乘法与解方程不等式,解题的关键是熟知整式的乘法运算法则