2022年人教版七年级数学下册第五章相交线与平行线专题测评试题(含详解).docx

上传人:知****量 文档编号:28177044 上传时间:2022-07-26 格式:DOCX 页数:21 大小:260.81KB
返回 下载 相关 举报
2022年人教版七年级数学下册第五章相交线与平行线专题测评试题(含详解).docx_第1页
第1页 / 共21页
2022年人教版七年级数学下册第五章相交线与平行线专题测评试题(含详解).docx_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022年人教版七年级数学下册第五章相交线与平行线专题测评试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年人教版七年级数学下册第五章相交线与平行线专题测评试题(含详解).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级数学下册第五章相交线与平行线专题测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、如图,直线,相交于点,平分,给出下列结论:当时,;为的平分线;若时,;其中正确的结论有( )A4个B3个C2个D1个2、命题“如果a0,b0,那么ab0”的逆命题是( )A如果a0,bo,那么ab0B如果ab0,那么a0,b0C如果a0,b0,那么a0D如果ab0,那么a0,b03、直线m外一点P它到直线的上点A、B、C的距离分别是6cm、5cm、3cm,则点P到直线m的距离为( )A3cmB5cmC6

2、cmD不大于3cm4、下列说法中,真命题的个数为( )两条平行线被第三条直线所截,同位角相等;在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行;过一点有且只有一条直线与这条直线平行;点到直线的距离是这一点到直线的垂线段;A1个B2个C3个D4个5、下列说法正确的是( )A命题是定理,但定理未必是命题B公理和定理都是真命题C定理和命题一样,有真有假D“取线段AB的中点C”是一个真命题6、如图所示,直线l1l2,点A、B在直线l2上,点C、D在直线l1上,若ABC的面积为S1,ABD的面积为S2,则( )AS1S2BS1S2CS1S2D不确定7、如果同一平面内有三条直线,那么它

3、们交点个数是( )个A3个B1或3个C1或2或3个D0或1或2或3个8、下列命题中是假命题的是()A实数与数轴上的点一一对应B内错角相等,两直线平行C平行于同一条直线的两条直线互相平行D如果一个角的两边分别平行于另一个角的两边,那么这两个角相等9、如所示各图中,1与2是对顶角的是( )ABCD10、如图,O为直线AB上一点,COB3612,则AOC的度数为()A16412B13612C14388D14348二、填空题(5小题,每小题4分,共计20分)1、把“内错角相等,两直线平行”改写成“如果那么”的形式_2、举例说明命题“如果,那么”的逆命题为假命题_3、如图,直线AB与CD被直线AC所截得

4、的内错角是 _4、如图,AC平分DAB,12,试说明证明:AC平分DAB_( )_,1_( )_,又12_( )_,2_( )_,AB_( )_5、如图,OE是的平分线,交OA于点C,交OE于点D,则的度数是_三、解答题(5小题,每小题10分,共计50分)1、已知,在下列各图中,点O为直线AB上一点,AOC60,直角三角板的直角顶点放在点O处(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则BOC的度数为 ,CON的度数为 ;(2)如图2,三角板一边OM恰好在BOC的角平分线OE上,另一边ON在直线AB的下方,此时BON的度数为 ;(3)在图2中,延长线段NO得到射线OD

5、,如图3,则AOD的度数为 ;DOC与BON的数量关系是DOC BON(填“”、“”或“”);(4)如图4,MNAB,ON在AOC的内部,若另一边OM在直线AB的下方,则COM+AON的度数为 ;AOMCON的度数为 2、如图,己知ABDC,ACBC,AC平分DAB,B50,求D的大小阅读下面的解答过程,并填括号里的空白(理由或数学式)解:ABDC( ),B+DCB180( )B( )(已知),DCB180B18050130ACBC(已知),ACB( )(垂直的定义)2( )ABDC(已知),1( )( )AC平分DAB(已知),DAB21( )(角平分线的定义)ABDC(己知),( )+DA

6、B180(两条直线平行,同旁内角互补)D180DAB 3、(感知)已知:如图,点E在AB上,且CE平分,求证:将下列证明过程补充完整:证明:CE平分(已知),_(角平分线的定义),(已知),_(等量代换),(_)(探究)已知:如图,点E在AB上,且CE平分,求证:(应用)如图,BE平分,点A是BD上一点,过点A作交BE于点E,直接写出的度数4、(1)用三角尺或量角器画已知直线的垂线,这样的垂线能画出几条?(2)经过直线上一点A画的垂线,这样的垂线能画出几条?(3)经过直线外一点B画的垂线,这样的垂线能画出几条?5、判断下列语句是否是命题,如果是,改写成“如果那么”的形式,并分别指出它们的题设和

7、结论,同时判断其真假(1)作直线AB的垂线(2)相等的角是对顶角(3)你喜欢数学吗?(4)OC平分AOB(5)两直线平行,内错角相等(6)同角的补角相等-参考答案-一、单选题1、B【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可【详解】解:AOE=90,DOF=90,BOE=90=AOE=DOF,AOF+EOF=90,EOF+EOD=90,EOD+BOD=90,EOF=BOD,AOF=DOE,当AOF=50时,DOE=50;故正确;OB平分DOG,BOD=BOG,BOD=BOG=EOF=AOC,故正确;,BOD=180-150=30,故正确;若为的平分线,则DOE=DOG,BOG+

8、BOD=90-EOE,EOF=30,而无法确定,无法说明的正确性;故选:B【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键2、B【分析】根据互逆命题概念解答即可【详解】解:命题“如果a0,b0,那么ab0”的逆命题是“如果ab0,那么a0,b0”,故选:B【点睛】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题其中一个命题称为另一个命题的逆命题3、D【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答【详解】解:垂线段最短,点到直线的距离,故选:D

9、【点睛】本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短4、B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】两条平行线被第三条直线所截,同位角相等,故是真命题;在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故是真命题;在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故不是真命题, 点到直线的距离是这一点到直线的垂线段的长度,故不是真命题,故真命题是,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键5、B【分析】命题是判断一件事情的句子,可分为真命题

10、和假命题;公认的真命题称之为公理,经过证明的真命题称之为定理;命题的结构必须有条件和结论,由此进行分析判断即可得到答案【详解】解:A、说法错误,定理是经过证明的真命题,但是命题不一定是定理;B、说法正确,公理和定理都是真命题;C、说法错误,定理是经过证明的真命题,命题有真假之分;D、说法错误,取线段AB的中点C是描述性语言,不是命题,更不是真命题故选:B【点睛】本题考查命题的定义、公理和定理的概念等相关知识点,牢记定义内容是解此类题的关键6、B【分析】由题意根据两平行线间的距离处处相等,可知ABC和ABD等底等高,结合三角形的面积公式从而进行分析即可【详解】解:因为l1l2,所以C、D两点到l

11、2的距离相等,即ABC和ABD的高相等同时ABC和ABD有共同的底AB,所以它们的面积相等故选:B.【点睛】本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等7、D【分析】根据三条直线是否有平行线分类讨论即可【详解】解:当三条直线平行时,交点个数为0;当三条直线相交于1点时,交点个数为1;当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;当三条直线互相不平行时,且交点不重合时,交点个数为3;所以,它们的交点个数有4种情形故选:D【点睛】本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论8、D【分析】根据题意利用实

12、数的性质、平行线的判定等知识分别判断后即可得出正确选项【详解】解:A、实数与数轴上的点一一对应,正确,是真命题,不符合题意;B、内错角相等,两直线平行,正确,是真命题,不符合题意;C、平行于同一直线的两条直线平行,正确,是真命题,不符合题意;D、如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意故选:D【点睛】本题考查命题与定理的知识,解题的关键是了解实数的性质、平行线的判定等知识9、B【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角【详解】解:A1与2没有公共顶点,不是对

13、顶角;B1与2有公共顶点,并且两边互为反向延长线,是对顶角;C1与2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D1与2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角故选:B【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键10、D【分析】根据邻补角及角度的运算可直接进行求解【详解】解:由图可知:AOC+BOC=180,COB3612,AOC=180-BOC=14348,故选D【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键二、填空题1、如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行【解析】【分析】先分

14、清命题“内错角相等,两直线平行”的题设与结论,然后把题设写在如果的后面,结论部分写在那么的后面【详解】解:“内错角相等,两直线平行”改写成“如果那么”的形式为如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行故答案为:如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行【点睛】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;解题的关键是掌握命题由题设和结论两部分组成2、如果,而(举例不唯一)【解析】【分析】首先要写出原命题的逆命题,然后通过实例说明逆命题不成立即可【详解】解:如果,那么的逆命题是:如果,那么如果,而故如果,那么为假

15、命题故答案为:如果,而(举例不唯一)【点睛】本题考查逆命题的相关知识,关键是能够写出原命题的逆命题3、2与4【解析】【分析】根据内错角的特点即可求解【详解】由图可得直线AB与CD被直线AC所截得的内错角是2与4故答案为:2与4【点睛】此题主要考查内错角的识别,解题的关键是熟知内错角的特点4、 已知 3 角平分线的定义 已知 3 等量代换 CD 内错角相等,两直线平行【解析】【分析】根据平行线证明对书写过程的要求和格式填写即可.【详解】证明:AC平分DAB(已知),1 3 (角平分线的定义),又12(已知),2 3 (等量代换),ABCD (内错角相等,两直线平行)故答案为:已知;3;角平分线的

16、定义;已知;3;等量代换;CD;内错角相等,两直线平行【点睛】本题主要考查平行线证明的书写,正确的逻辑推理和书写格式是解题的关键.5、25【解析】【分析】先证明再证明从而可得答案.【详解】解: OE是的平分线, , 故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,熟练的运用平行线的性质与角平分线的定义证明角的相等是解本题的关键.三、解答题1、(1)120;150;(2)30;(3)30,=;(4)150;30【分析】(1)根据AOC=60,利用两角互补可得BOC=18060=120,根据AON=90,利用两角和CON=AOC+AON即可得出结论;(2)根据OM平分BOC,可得出BO

17、M=60,由BOM+BON=MON=90可求得BON的度数;(3)根据对顶角求出AOD=30,根据AOC=60,可得DOC=AOCAOD=6030=30=BON(4)根据垂直可得AON与MNO互余,根据MNO=60(三角板里面的60角),可求AON=9060=30,根据AOC=60,求出CON=AOCAON=6030=30即可【详解】解:(1)AOC=60,BOC与AOC互补,AON=90,BOC=18060=120,CON=AOC+AON=60+90=150故答案为120;150;(2)三角板一边OM恰好在BOC的角平分线OE上,由(1)得BOC=120,BOM=BOC=60,又MON=BO

18、M+BON=90,BON=9060=30故答案为30;(3)AOD=BON(对顶角),BON=30,AOD=30,又AOC=60,DOC=AOCAOD=6030=30=BON故答案为30,=;(4)MNAB,AON与MNO互余,MNO=60(三角板里面的60角),AON=9060=30,AOC=60,CON=AOCAON=6030=30,COM+AON=MON+2CON=90+230=150,AOMCON=MON2CON=90230=30故答案为150;30【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角

19、是解题关键2、见解析【分析】先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得【详解】解:(已知),(两直线平行,同旁内角互补)(已知),(已知),(垂直的定义)(已知),(两直线平行,内错角相等)平分(已知),(角平分线的定义)(己知),(两条直线平行,同旁内角互补)【点睛】本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键3、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;

20、探究:利用角平分线的性质得2=DCE,由平行线性质可得DCE=1,等量代换即可解决;应用:利用角平分线的性质得ABE=CBE,由平行线性质可得CBE=E,等量代换得E=ABE,由即可求得ABC的度数,从而可求得E的度数【详解】感知CE平分(已知),ECD(角平分线的定义),(已知),ECD(等量代换),(内错角相等,两直线平行)故答案为:ECD;ECD;内错角相等,两直线平行探究CE平分,.应用BE平分DBC,AEBC,CBE=E,BAE+ABC=180,E=ABE,ABC=80【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键4、(1)能画无数条;(2)能画一条

21、;(3)能画一条【分析】用三角板的一条直角边与已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和点A(或点B)重合,过点A(或点B)沿直角边向已知直线画直线即可,在两线相交处标出垂足(直角符号),据此即可解答【详解】解:(1)根据题意得:画已知直线的垂线,这样的垂线能画出无数条;(2)根据题意得:经过直线上一点A画的垂线,这样的垂线能画出一条;(3)根据题意得:经过直线外一点B画的垂线,这样的垂线能画出一条【点睛】本题主要考查了画已知直线的垂线,熟练掌握同一平面内,过已知点有且只有一条直线与已知直线垂直是解题的关键5、(1)是作图语言,不符合命题的定义,不是命题;(2)是命题;如果

22、两个角相等,那么这两个角是对顶角;题设是两个角相等;结论是这两个角是对顶角;此命题是假命题;(3)表示疑问的句子,没有对事情做出判断,所以此语句不是命题;(4)陈述了一个事情,没有做出判断,不是命题;(5)是命题;如果两平行线被第三条直线所截,那么内错角相等;题设是两平行线被第三条直线所截,结论是内错角相等;此命题是真命题;(6)是命题;如果两个角是同一个角的补角,那么这两个角相等;题设是两个角是同一个角的补角,结论是这两个角相等;此命题是真命题【分析】判断语句是否为命题要紧扣两条:(1)命题必须是一个完整的陈述句;(2)必须对某件事情做出肯定或否定的判断这二者缺一不可【详解】(1)是作图语言,不符合命题的定义,不是命题;(2)是命题;改写:如果两个角相等,那么这两个角是对顶角;题设:两个角相等;结论:这两个角是对顶角;此命题是假命题;(3)表示疑问的句子,没有对事情做出判断,所以此语句不是命题;(4)陈述了一个事情,没有做出判断,不是命题;(5)是命题改写:如果两平行线被第三条直线所截,那么内错角相等;题设:两平行线被第三条直线所截;结论:内错角相等;此命题是真命题;(6)是命题改写:如果两个角是同一个角的补角,那么这两个角相等;题设:两个角是同一个角的补角;结论:这两个角相等;此命题是真命题【点睛】本题考察了命题的概念,判断语句是否为命题的两个条件是做题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁