《2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形专题练习试卷(精选含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形专题练习试卷(精选含详解).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版七年级数学第二学期第十四章三角形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C1
2、0D122、如图,点F,C在BE上,ACDF,BFEC,ABDE,AC与DF相交于点G,则与2DFE相等的是()AA+DB3BC180FGCDACE+B3、在ABC中,ABC,则C()A70B80C100D1204、小明把一副含有45,30角的直角三角板如图摆放其中CF90,A45,D30,则a+等于( )A180B210C360D2705、如图,ACBC,C,DEAC于E,FDAB于D,则EDF等于()AB90C90D18026、若一个三角形的三个外角之比为3:4:5,则该三角形为()A直角三角形B等腰三角形C等边三角形D等腰直角三角形7、满足下列条件的两个三角形不一定全等的是( )A周长相
3、等的两个三角形B有一腰和底边对应相等的两个等腰三角形C三边都对应相等的两个三角形D两条直角边对应相等的两个直角三角形8、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )ABCD9、如图,在RtABC中,ACB90,BAC40,直线ab,若BC在直线b上,则1的度数为()A40B45C50D6010、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,则( )A45B60C35D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则以、为边长的等腰三角形的周长为_2、如图,一把直尺的一
4、边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,则_度3、如图,ABCD,若要判定ABDCDB,则需要添加的一个条件是 _4、如图,BD,CE是等边三角形ABC的中线,BD,CE交于点F,则_5、如图,在中,已知点分别为的中点,若的面积为,则阴影部分的面积为 _ 三、解答题(10小题,每小题5分,共计50分)1、中,以点为中心,分别将线段,逆时针旋转得到线段,连接,延长交于点(1)如图1,若,的度数为_;(2)如图2,当吋,依题意补全图2;猜想与的数量关系,并加以证明2、ABC中,ABAC,BD平分ABC交AC于点D,从点A作AEBC交BD的延长线于点E(1)若BA
5、C40,求E的度数;(2)点F是BE上一点,且FEBD取DF的中点H,请问AHBE吗?试说明理由3、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,(1)求证:;(2)若,求BE的长4、如图,点D在AC上,BC,DE交于点F,(1)求证:;(2)若,求CDE的度数5、已知AMCN,点B在直线AM、CN之间,ABBC于点B(1)如图1,请直接写出A和C之间的数量关系: (2)如图2,A和C满足怎样的数量关系?请说明理由(3)如图3,AE平分MAB,CH平分NCB,AE与CH交于点G,则AGH的度数为 6、阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为的
6、两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点易证得大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、三点共线,进而可证明,故任务:如图3,在四边形中,以为顶点的,、与、边分别交于、两点请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由7、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,BAECAD,ABAE,ADAC(1)求证:DECBAE;(2)如图2,当BAECAD30,ADAB时,延长DE、AB交于点
7、G,请直接写出图中除ABE、ADC以外的等腰三角形8、如图,已知ABCDEB,点E在AB上,AC与BD交于点F,AB6,BC3,C55,D25(1)求AE的长度;(2)求AED的度数9、如图,点B,F,C,E在一条直线上,AB=DE,B=E,BF=CE求证:AC=DF10、如图,ABAD,ACAE,BCDE,点E在BC上(1)求证:EACBAD;(2)若EAC42,求DEB的度数-参考答案-一、单选题1、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,
8、的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型2、C【详解】由题意根据等式的性质得出BCEF,进而利用SSS证明ABC与DEF全等,利用全等三角形的性质得出ACBDFE,最后利用三角形内角和进行分析解答【分析】解:BFEC,BF+FCEC+FC,BCEF,在ABC与DEF中,ABCDEF(SSS),ACBDFE,2DFE180FGC,故选:C【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法)3、D【分析】根据三角形的内角和,
9、进而根据已知条件,将代入即可求得【详解】解:在ABC中,ABC,解得故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键4、B【分析】已知,得到,根据外角性质,得到,再将两式相加,等量代换,即可得解;【详解】解:如图所示,;故选D【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键5、B【分析】ACBC,C,DEAC于E,FDAB于D,有,即可求得角度【详解】解:由题意知:,故选B【点睛】本题考查了等腰三角形的性质,几何图形中角度的计算解题的关键在于确定各角度之间的数量关系6、A【分析】根据三角形外角和为360计算,求出内角的度数,判断即可【详解】解:设三
10、角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x360,解得,x30,三角形的三个外角的度数分别为90、120、150,对应的三个内角的度数分别为90、60、30,此三角形为直角三角形,故选:A【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360是解题的关键7、A【分析】根据全等三角形的判定方法求解即可判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可【详解】解:A、周长相等的两个三角形不一定全等,符合题意; B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等
11、,不符合题意;D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意故选:A【点睛】此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形)8、B【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论【详解】解:由三角形内角和知BAC=180-2-1,AE为BAC的平分线,BAE=BAC=(180-2-1)AD为BC边上的高,ADC=90=DAB+ABD又ABD=180-2,DAB=90-(180-2)=2-90,EAD=DAB+BAE=2-90+(18
12、0-2-1)=(2-1)故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系9、C【分析】根据三角形内角和定理确定,然后利用平行线的性质求解即可【详解】解:,故选:C【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键10、A【分析】由折叠得到B=BCD,根据三角形的内角和得A+B+ACB=180,代入度数计算即可【详解】解:由折叠得B=BCD,A+B+ACB=180,65+2B+25=180,B=45,故选:A【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性
13、质是解题的关键二、填空题1、17【分析】先根据非负数的性质列式求出a、b的值,再分情况讨论求解即可【详解】解:,解得:,若是腰长,则底边为7,三角形的三边分别为3、3、7,3、3、7不能组成三角形;若是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,周长为:,以、为边长的等腰三角形的周长为17,故答案为:17【点睛】本题考查了等腰三角形的性质,绝对值和平方的非负性,以及三角形的三边关系,难点在于要分类讨论求解2、20【分析】利用平行线的性质求出1,再利用三角形外角的性质求出DCB即可【详解】解:EFCD,1是DCB的外角,1-B=50-30=20,故答案为:20【点睛】本题考查了
14、平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识3、1=2(或填AD=CB)【分析】根据题意知,在ABD与CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加1=2即可由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【详解】解:在ABD与CDB中,AB=CD,BD=DB,添加1=2时,可以根据SAS判定ABDCDB,添加AD=CB时,可以根据SSS判定ABDCDB,故答案为1=2(或填AD=CB).【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全
15、等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角4、120【分析】等边三角形中线与角平分线合一,有,由可求得结果【详解】解:是等边三角形BD,CE是等边三角形ABC的中线又故答案为:【点睛】本题考查了等边三角形的性质,角度的计算解题的关键在于熟练利用等边三角形三线合一的性质5、1【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答【详解】解:点E是AD的中点,SABESABD,SACESADC,SABESACESABC42cm2,SBCESABC42cm2,点F是CE的中点,SBEFSBCE21cm2故答案为:1【点睛】本题考查了三角形的面积,主要利
16、用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等三、解答题1、(1)120(2)图形见解析;【分析】(1)根据进而判断出点E在边AB上,得出ADEABC(SAS),进而得出AED=ACB=90最后用三角形的外角的性质即可得出结论;(2)依题意补全图形即可;先判断出ADEABC(SAS),进而得出AEF=90,即可判断出RtAEFRtACF,进而求出CAF=CAE=30,即可得出结论(1)(1)如图1,在RtABC中,B=30,BAC=60,由旋转知,CAE=60=CAB,点E在边AB上,AD=AB,AE=AC,ADEABC(SAS),AED=ACB=90,CF
17、E=B+BEF=30+90=120,故答案为120;(2)(2)依题意补全图形如图2所示,如图2,连接AF,BAD=CAE,EAD=CAB,AD=AB,AE=AC,ADEABC(SAS),AED=C=90,AEF=90,RtAEFRtACF(HL),EAF=CAF,CAF=CAE=30,在RtACF中,CF=AF,且AC2+CF2=AF2,【点睛】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出ADEABC是解本题的关键2、(1)E35;(2)AHBE理由见解析【分析】(1)根据等腰三角形两底角相等,已知顶角,
18、可以求出底角,再根据角平分线的定义求出CBD的度数,最后根据两直线平行,内错角相等求出;(2)由“SAS”可证ABDAEF,可得AD=AF,由等腰三角形的性质可求解【详解】解:(1)AB=AC,ABC=ACB,BAC=40,ABC=(180-BAC)=70,BD平分ABC,CBD=ABC=35,AEBC,E=CBD=35;(2)BD平分ABC,E=CBD,CBD=ABD=E,AB=AE,在ABD和AEF中,ABDAEF(SAS),AD=AF,点H是DF的中点,AHBE【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键3、(1)见解析(2)【分析】(1)利用是
19、的外角,以及证明即可(2)证明,可知,从而得出答案(1)证明:是的外角,又,(2)解:在和中,【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键4、(1)证明见解析;(2)CDE=20【分析】(1)由“SAS”可证ABCDBE;(2)由全等三角形的性质可得C=E,由三角形的外角性质可求解(1)证明:ABD=CBE,ABD+DBC=CBE+DBC,即:ABC=DBE,在ABC和DBE中,ABCDBE(SAS);(2)解:由(1)可知:ABCDBE,C=E,DFB=C+CDE,DFB=E+CBE,CDE=CBE,ABD=CBE=20,CDE=20【点睛
20、】本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键5、(1)A+C90;(2)CA90,见解析;(3)45【分析】(1)过点B作BEAM,利用平行线的性质即可求得结论;(2)过点B作BEAM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论【详解】(1)过点B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BECN,CCBE,ABBC,ABC90,A+CABE+CBEABC90故答案为:A+C90;(2)A和C满足:CA90理由:过点B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BE
21、CN,C+CBE180,CBE180C,ABBC,ABC90,ABE+CBE90,A+180C90,CA90;(3)设CH与AB交于点F,如图,AE平分MAB,GAFMAB,CH平分NCB,BCFBCN,B90,BFC90BCF,AFGBFC,AFG90BCFAGHGAF+AFG,AGHMAB+90BCN90(BCNMAB)由(2)知:BCNMAB90,AGH904545故答案为:45【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键6、成立,证明见解析【分析】根据阅读材料将ADF旋转120再证全等即可求得EF= BE+DF 【详解】解:成立证明:将绕点顺时针旋转,得
22、到,、三点共线,【点睛】本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键7、(1)见解析;(2)AEF、ADG、DCF、ECD【分析】(1)根据已知条件得到BAECAD,根据全等三角形的性质得到AEDABC,根据等腰三角形的性质得到ABCAEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论【详解】证明:(1)如图1,BAECAD, BAECAECADCAE,即BACEAD,在AED与ABC中,AEDABC,AEDABC,BAEABCAEB180,CEDAEDAEB180,ABAE,ABCAEB,BAE2AEB180,CED2AEB180,DECBAE;(2)解:如
23、图2, BAECAD30,ABCAEBACDADC75,由(1)得:AEDABC75,DECBAE30,ADAB,BAD90,CAE30,AFE180307575,AEFAFE, AEF是等腰三角形, BEGDEC30,ABC75,G45,在RtAGD中,ADG45,ADG是等腰直角三角形, CDF754530,DCFDFC75,DCF是等腰直角三角形;CEDEDC30,ECD是等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键8、(1);(2)【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即
24、可得;(2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得【详解】解:(1),;(2),【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键9、见解析【分析】先由BF=CE说明BC= EF然后运用SAS证明ABCDEF,最后运用全等三角形的性质即可证明【详解】证明:BF= CE, BC= EF 在ABC和DEF中,ABCDEF(SAS) AC=DF【点睛】本题主要考查了全等三角形的判定与性质,正确证明ABCDEF是解答本题的关键10、(1)见解析;(2)42【分析】(1)利用边边边证得ABCADE,可得BACDAE,即可求证;(2)根据等腰三角形的性质,可得AECC69,再由ABCADE,可得AEDC69, 即可求解【详解】(1)证明:ABAD,ACAE,BCDE,ABCADE BACDAE BACBAEDAEBAE即EACBAD; (2)解:ACAE,EAC=42,AECC (180EAC) (18042)69ABCADE,AEDC69, DEB180AEDC180696942【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键